返回

20.2.2第2课时用样本方差估计总体方差课件(沪科版八下数学)

首页 > 初中 > 数学 > 20.2.2第2课时用样本方差估计总体方差课件(沪科版八下数学)

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

20.2.2数据的离散程度第20章数据的初步分析第2课时用样本方差估计总体方差 情境引入学习目标1.理解方差的意义.2.能用样本的方差估计总体的方差及根据方差做决策.(重点、难点) 为了选拔一名同学参加某市中学生射击竞赛,某校对甲、乙两名同学的射击水平进行了测试,两人在相同条件下各射靶10次.=7768678759乙成绩(环数)=57109568677甲成绩(环数)X甲X乙77大家想想,我们应选甲还是乙,能否用你前面学的知识解决一下?中位数众数7777导入新课问题引入 引例:某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在五天中进球的个数统计结果如下:队员每人每天进球数甲1061068乙79789经过计算,甲进球的平均数为x甲=8,方差为.讲授新课根据方差做决策 (1)求乙进球的平均数和方差;(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么? 例1:为了比较甲、乙两个新品种水稻的产品质量,收割时各抽取了五块具有相同条件的试验田地,分别称得它们的质量,得其每公顷产量如下表(单位:t):12345甲12.61212.311.712.9乙12.312.312.311.413.2(1)哪个品种平均每公顷的产量较高?(2)哪个品种的产量较稳定? 12345甲12.61212.311.712.9乙12.312.312.311.413.2(1)哪个品种平均每公顷的产量较高? 12345甲12.61212.311.712.9乙12.312.312.311.413.2(2)哪个品种的产量较稳定? (1)在解决实际问题时,方差的作用是什么?反映数据的波动大小.方差越大,数据的波动越大;方差越小,数据的波动越小,可用样本方差估计总体方差.(2)运用方差解决实际问题的一般步骤是怎样的?先计算样本数据平均数,当两组数据的平均数相等或相近时,再利用样本方差来估计总体数据的波动情况.知识要点 做一做某跳远队准备从甲、乙两名运动员中选取成绩稳定的一名参加比赛.下表是这两名运动员10次测验成绩(单位:m):甲5.855.936.075.915.996.135.986.056.006.19乙6.116.085.835.925.845.816.186.175.856.21你认为应该选择哪名运动员参赛?为什么? 【解】甲、乙测验成绩的平均数分别是x甲=6.01,x乙=6.方差分别是s2甲≈0.00954,s2乙≈0.02434.s2甲<s2乙,因此,甲成绩较稳定,应该选甲参加比赛. 例2某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛.在最近10次选拔赛中,他们的成绩(单位:cm)如下:甲:585596610598612597604600613601乙:613618580574618593585590598624(1)这两名运动员的运动成绩各有何特点?分析:分别计算出平均数和方差;根据平均数判断出谁的成绩好,根据方差判断出谁的成绩波动大. 解:(585+596+610+598+612+597+604+600+613+601)=601.6,s2甲≈65.84;(613+618+580+574+618+593+585+590+598+624)=599.3,s2乙≈284.21.由上面计算结果可知:甲队员的平均成绩较好,也比较稳定,乙队员的成绩相对不稳定.但甲队员的成绩不突出,乙队员和甲队员相比比较突出. (2)历届比赛表明,成绩达到5.96m就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选谁参加这项比赛.解:从平均数分析可知,甲、乙两队员都有夺冠的可能.但由方差分析可知,甲成绩比较平稳,夺冠的可能性比乙大.但要打破纪录,成绩要比较突出,因此乙队员打破纪录的可能性大,我认为为了打破纪录,应选乙队员参加这项比赛. 1.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如下表所示.根据表中的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?解:样本数据的平均数分别是:样本平均数相同,估计这批鸡腿的平均质量相近.甲747475747673767376757877747273乙757379727671737278747778807175当堂练习 解:样本数据的方差分别是:由   可知,两家加工厂的鸡腿质量大致相等;由<可知,甲加工厂的鸡腿质量更稳定,大小更均匀.因此,快餐公司应该选购甲加工厂生产的鸡腿.甲747475747673767376757877747273乙757379727671737278747778807175 2.农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如下表:品种各试验田每公顷产量(单位:吨)甲7.657.507.627.597.657.647.507.407.417.41乙7.557.567.587.447.497.587.587.467.537.49 根据这些数据估计,农科院应该选择哪种甜玉米种子呢?农科院应该选择乙种甜玉米种子 3.为了从甲、乙两名学生中选择一人去参加电脑知识竞赛,在相同条件下对他们的电脑知识进行10次测验,成绩(单位:分)如下:甲的成绩76849084818788818584乙的成绩82868790798193907478(1)填写下表:同学平均成绩中位数众数方差85分以上的频率甲84840.3乙84843484900.514.4 (2)利用以上信息,请从不同的角度对甲、乙两名同学的成绩进行评价.解:从众数看,甲成绩的众数为84分,乙成绩的众数是90分,乙的成绩比甲好;从方差看,s2甲=14.4,s2乙=34,甲的成绩比乙相对稳定;从甲、乙的中位数、平均数看,中位数、平均数都是84分,两人成绩一样好;从频率看,甲85分以上的次数比乙少,乙的成绩比甲好. 课堂小结根据方差做决策方差方差的作用:比较数据的稳定性利用样本方差估计总体方差 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭