返回

5.4第2课时分式方程的解法课件(北师大版八下数学)

首页 > 初中 > 数学 > 5.4第2课时分式方程的解法课件(北师大版八下数学)

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

第五章分式5.4分式方程第2课时分式方程的解法 1.掌握可化为一元一次方程的分式方程的解法;(重点)2.理解分式方程产生增根的原因,掌握分式方程验根的方法.(难点)学习目标 导入新课复习引入1.解一元一次方程的步骤:移项,合并同类项,未知数系数化为1.2.解一元一次方程解:3x-2(x+1)=63x-2x=6+2x=8 你能试着解这个分式方程吗?(2)怎样去分母?(3)在方程两边乘什么样的式子才能把每一个分母都约去?(4)这样做的依据是什么?解分式方程最关键的问题是什么?(1)如何把它转化为整式方程呢?“去分母”分式方程的解法讲授新课 方程各分母最简公分母是:(30+x)(30-x)解:方程①两边同乘(30+x)(30-x),得检验:将x=6代入原分式方程中,左边==右边,因此x=6是原分式方程的解.90(30-x)=60(30+x),解得x=6.x=6是原分式方程的解吗? 解分式方程的基本思路:是将分式方程化为整式方程,具体做法是“去分母”即方程两边同乘最简公分母.这也是解分式方程的一般方法.归纳总结 下面我们再讨论一个分式方程:解:方程两边同乘(x+5)(x-5),得x+5=10,解得x=5.x=5是原分式方程的解吗? 检验:将x=5代入原方程中,分母x-5和x2-25的值都为0,相应的分式无意义.因此x=5虽是整式方程x+5=10的解,但不是原分式方程的解,实际上,这个分式方程无解. 想一想:上面两个分式方程中,为什么去分母后所得整式方程的解就是原分式方程的解,而去分母后所得整式方程的解却不是原分式方程的解呢? 真相揭秘:分式两边同乘了不为0的式子,所得整式方程的解与分式方程的解相同.我们再来观察去分母的过程:90(30-x)=60(30+x)两边同乘(30+x)(30-x)当x=6时,(30+x)(30-x)≠0 真相揭秘:分式两边同乘了等于0的式子,所得整式方程的解使分母为0,这个整式方程的解就不是原分式方程的解.x+5=10两边同乘(x+5)(x-5)当x=5时,(x+5)(x-5)=0 解分式方程时,去分母后所得整式方程的解有可能使原方程的分母为0,所以分式方程的解必须检验.怎样检验?这个整式方程的解是不是原分式的解呢?分式方程解的检验------必不可少的步骤检验方法:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解. 1.在方程的两边都乘以最简公分母,约去分母,化成整式方程.2.解这个整式方程.3.把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则须舍去。4.写出原方程的根.简记为:“一化二解三检验”.知识要点“去分母法”解分式方程的步骤 例1解方程:解:方程两边都乘最简公分母x(x-2),得解这个一元一次方程,得x=-3.检验:把x=-3代入原方程的左边和右边,得因此x=-3是原方程的解.典例精析 解:两边都乘以最简公分母(x+2)(x-2),得x+2=4.解得x=2.检验:把x=2代入原方程,两边分母为0,分式无意义.因此x=2不是原分式方程的解,从而原方程无解.提醒:在去分母,将分式方程转化为整式方程解的过程中出现使最简公分母(或分母)为零的根是增根. 用框图的方式总结为:分式方程整式方程去分母解整式方程x=a检验x=a是分式方程的解x=a不是分式方程的解x=a最简公分母是否为零?否是 例2关于x的方程的解是正数,则a的取值范围是____________.解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.a<-1且a≠-2 若关于x的分式方程无解,求m的值.例3解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根. 解:方程两边都乘以(x+2)(x-2)得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6. 分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.方法总结 1.解分式方程时,去分母后得到的整式方程是()A.2(x-8)+5x=16(x-7)B.2(x-8)+5x=8C.2(x-8)-5x=16(x-7)D.2(x-8)-5x=8A2.若关于x的分式方程无解,则m的值为()A.-1,5B.1C.-1.5或2D.-0.5或-1.5D当堂练习 3.解方程解:方程两边乘x(x-3),得2x=3x-9.解得x=9.检验:当x=9时,x(x-3)≠0.所以,原分式方程的解为x=9. 4.解方程解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3.解得x=1.检验:当x=1时,(x-1)(x+2)=0,因此x=1不是原分式方程的解.所以,原分式方程无解. 5.解方程:解:去分母,得解得检验:把代入所以原方程的解为 6.若关于x的方程有增根,求m的值.解:方程两边同乘以x-2,得2-x+m=2x-4,合并同类项,得3x=6+m,∴m=3x-6.∵该分式方程有增根,∴x=2,∴m=0. 课堂小结分式方程的解法注意(1)去分母时,原方程的整式部分漏乘.步骤(去分母法)一化(分式方程转化为整式方程);二解(整式方程);三检验(代入最简公分母看是否为零)(2)约去分母后,分子是多项式时,没有添括号.(因分数线有括号的作用)(3)忘记检验 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭