返回

第六章平行四边形小结与复习课件(北师大版八下数学)

首页 > 初中 > 数学 > 第六章平行四边形小结与复习课件(北师大版八下数学)

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

小结与复习第六章平行四边形 几何语言文字叙述对边平行对边相等对角相等∴AD=BC,AB=DC.∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D.∵四边形ABCD是平行四边形,ABCD一、平行四边形的性质要点梳理对角线互相平分∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC.平行四边形是中心对称图形. 几何语言文字叙述两组对边相等一组对边平行且相等∴四边形ABCD是平行四边形.∵AD=BC,AB=DC,∴四边形ABCD是平行四边形.∵AB=DC,AB∥DC,ABCD二、平行四边形的判定对角线互相平分∴四边形ABCD是平行四边形.∵OA=OC,OB=OD,两组对边分别平行(定义)∵四边形ABCD是平行四边形.∴AD∥BC,AB∥DC,平行线之间的距离处处相等 1.三角形的中位线定义:连结三角形两边中点的线段叫做三角形的中位线.2.三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.三、三角形的中位线用符号语言表示∵DE是△ABC的中位线∴DE∥BC, 四、多边形的内角和与外角和多边形的内角和等于(n-2)×180°多边形的外角和等于360°正多边形每个内角的度数是正多边形每个外角的度数是 考点一平行四边形的性质考点讲练例1如图,在平行四边形ABCD中,下列结论中错误的是(  )A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC=BC【解析】A.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2,故A正确;B.∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,故B正确;C.∵四边形ABCD是平行四边形,∴AB=CD,故C正确;D 方法总结主要考查了平行四边形的性质,关键是掌握平行四边形对边相等且平行,对角相等. 针对训练1.如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,(平行四边形的对角相等,对边相等)∵AE平分∠BAD,CF平分∠BCD,∴∠EAB=∠BAD,∠FCD=∠BCD,∴∠EAB=∠FCD,在△ABE和△CDF中∠B=∠DAB=CD∠EAB=∠FCD∴△ABE≌△CDF,∴BE=DF.∵AD=BC∴AF=EC. 例2如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为(  )A.4cmB.5cmC.6cmD.8cm【解析】∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC=AC=5cm,OB=OD=BD=3cm,∵∠ODA=90°,∴AD==4cm.A 方法总结主要考查了平行四边形的性质,平行四边形的对角线互相平分,解题时还要注意勾股定理的应用. 【解析】∵在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,∴AO=CO=12cm,BO=19cm,AD=BC=28cm,∴△BOC的周长是:BO+CO+BC=12+19+28=51(cm).针对训练2.如图,在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则△BOC的周长是(  )A.45cmB.59cmC.62cmD.90cmB 考点二平行四边形的判定例3如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形(  )A.OA=OC,OB=ODB.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BCD.AB=CD,AO=COD 平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.方法总结 针对训练3.如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,(1)求证:AB=EF.(1)证明:∵AC∥DE,∴∠ACD=∠EDF,∵BD=CF,∴BD+DC=CF+DC,即BC=DF,又∵∠A=∠E,∴△ABC≌△EFD(AAS),∴AB=EF; (2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.(2)猜想:四边形ABEF为平行四边形,理由如下:由(1)知△ABC≌△EFD,∴∠B=∠F,∴AB∥EF,又∵AB=EF,四边形ABEF为平行四边形.(一组对边平行且相等的四边形是平行四边形) 考点三平行四边形性质和判定的综合应用例4如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.求证:四边形AECF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,(平行四边形的对边平行且相等)∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形. 本题考查了平行四边形的性质和判定的应用,注意平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.方法总结 针对训练4.如图,在四边形ABCD中,对角线AC、BD相交于点O,E、F分别是BO、OD的中点,且四边形AECF是平行四边形,试判断四边形ABCD是不是平行四边形,并说明理由. 证明:∵平行四边形AECF,∴OA=OC,OE=OF,(平行四边形的对角线互相平分)∵E、F分别是BO、OD的中点,∴2OE=2OF,即OB=OC,∵OA=OC,∴四边形ABCD是平行四边形.(对角线互相平分的四边形是平行四边形) 考点四三角形的中位线例5已知:AD是△ABC的中线,E是AD的中点,F是BE的延长线与AC的交点。求证:.证明:过点D作DH∥BF,交AC于点H.∵AD是△ABC的中线∴D是BC的中点∴CH=HF=CF∵E是AD的中点,EF∥DH∴AF=FH.∴AF=FCABCDEFH 针对训练5.若三角形的三条中位线之比为6:5:4,三角形的周长为60cm,那么该三角形中最长边的边长为___;解析:设三角形的三条中位线之长分别为6x,5x,4x,则三角形的三条边长之长分别为12x,10x,8x,依题意有12x+10x+8x=60,解得x=2.所以,最长边12x=24(cm).24cm 考点五多边形的内角和与外角和例6:已知一个多边形的每个外角都是其相邻内角度数的,求这个多边形的边数.解:设此多边形的外角的度数为x,则内角的度数为4x,则x+4x=180°,解得x=36°.∴边数n=360°÷36°=10. 6.一个正多边形的每一个内角都等于120°,则其边数是.6【解析】因为该多边形的每一个内角都等于120度,所以它的每一个外角都等于60°.所以边数是6.归纳拓展在多边形的有关求边数或内角、外角度数的问题中,要注意内角与外角之间的转化,以及定理的运用.尤其在求边数的问题中,常常利用定理列出方程,进而再求得边数.针对训练 平行四边形性质①对边平行且相等②对角相等,邻角互补③对角线互相平分判别①两组对边分别平行的②两组对边分别相等的③一组对边平行且相等的④对角线互相平分的四边形平行四边形课堂小结 三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.多边形的内角和与外角和内角和计算公式(n-2)×180°(n≥3的整数)外角和多边形的外角和等于360°特别注意:与边数无关。正多边形内角=,外角= 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭