返回

4.1.1变量与函数课件(湘教版八下)

首页 > 初中 > 数学 > 4.1.1变量与函数课件(湘教版八下)

4.1.1变量与函数课件(湘教版八下)

  • 2022-03-29 19:00:28
  • 24页
  • 4.21 MB
点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

4.1函数和它的表示法第4章一次函数4.1.1变量与函数 1.联系自己的学习、生活实际,通过具体情境领悟函数的概念,了解常量、变量,知道自变量与函数,能写出简单的函数表达式;2.探究变量的发现和函数概念的形成,提高学生分析、解决问题的能力.学习目标 导入新课万物皆变行星在宇宙中的位置随时间而变化情境引入 气温随海拔而变化 汽车行驶里程随行驶时间而变化 为了更深刻地认识千变万化的世界,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律. 讲授新课变量与函数一我们生活在一个变化的世界,通常会看到在同一变化过程中,有两个相关的量,其中一个量往往随着另一个量的变化而变化,那我们如何来研究各种运动变化呢?数学上常用变量与函数来刻画各种运动变化. 问题1如图,用热气球探测高空气象.当t=3min,h为650m设热气球从海拔500m处的某地升空,它上升后到达的海拔高度hm与上升时间tmin的关系记录如下表:时间t/min01234567…海拔高度h/m500550600650700750800850…当t=2min,h为600m当t=1min,h为550m当t=0min,h为500m (1)计时一开始,热气球的高度是多少?(2)热气球的高度随时间的推移而升高的高度有规律吗?(3)你能总结出h与t的关系吗?500m50m×1=50m50m×2=100m50m×3=150m50m×4=200m…50m×t=50tmh=500+50t(4)哪些量发生了变化?哪些量没有发生变化?保持不变的量(常量)热气球原先所在的高度500m气球上升的速度50m/min不断变化的量热气球升空的时间tmin气球升空的高度hm(变量) 因别人变化而变化的量__________.自我发生变化的量___________;(5)热气球上升的高度h与时间t,这两个变量之间有关系吗?th结论:在一个变化的过程中,取值会发生变化的量称为变量,取值固定不变的量称为常量.时间t/min01234567…海拔高度h/m500550600650700750800850… 典例精析例1指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5元/千克,买a千橘子的总价为m元,其中常量是,变量是;(2)周长C与圆的半径r之间的关系式是C=2πr,其中常量是,变量是;(3)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式中,其中常量是,变量是;5a,m2,πC,r注意:π是一个确定的数,是常量S,h 指出下列变化过程中的变量和常量:(1)汽油的价格是7.4元/升,加油xL,车主加油付油费为y元;(2)小明看一本200页的小说,看完这本小说需要t天,平均每天所看的页数为n;(3)用长为40cm的绳子围矩形,围成的矩形一边长为xcm,其面积为Scm2.(4)若直角三角形中的一个锐角的度数为α,则另一个锐角β(度)与α间的关系式是β=90-α.练一练 例2阅读并完成下面一段叙述:⒈某人持续以a米/分的速度用t分钟时间跑了s米,其中常量是,变量是.⒉s米的路程不同的人以不同的速度a米/分各需跑的时间为t分,其中常量是,变量是.3.根据上面的叙述,写出一句关于常量与变量的结论:.在不同的条件下,常量与变量是相对的at,ssa,t区分常量与变量,就是看在某个变化过程中,该量的值是否可以改变,即是否可以取不同的值.方法 问题2下图是某市某日自动测量仪记下的用电负荷曲线.O (1)你发现哪些变量?哪个是自变量?哪个是因变量?为什么?(3)这一天的用电高峰、用电低谷时负荷各是多少?它们是在什么时刻达到的?(2)任意给出这一天中的某一时刻,如4.5h、20h,你能找到这一时刻的用电负荷yMW(兆瓦)是多少吗?说明了什么?时间、负荷时间负荷因为负荷随时间的变化而变化.能,分别为10000MW、15000MW,说明t的值一确定,y的值就唯一确定了.这一天的用电高峰在13.5h达到18000MW,用电低估在4.5h达到10000MW. 问题3汽车在行驶过程中,由于惯性的作用刹车后仍将滑行一段距离才能停住,这段距离称为刹车距离.刹车距离是分析事故原因的一个重要因素.(1)式中哪个量是常量?哪个量是变量?哪个量是自变量?哪个量是因变量?某型号的汽车在平整路面上的刹车距离sm与车速vkm/h之间有下列经验公式:(2)当刹车时车速v分别是40、80、120km/h时,相应的滑行距离s分别是多少?当v=40km/h时,s=6.25m;当v=80km/h时,s=25m;当v=120km/h时,s=56.25m.①256;②s,v;③v;④s. 一般地,如果变量y随着变量x而变化,并且对于x取的每一个值,y都有唯一的一个值与它对应,那么称y是x的函数,记作:y=f(x).这时把x叫作自变量,把y叫作因变量.对于自变量x取的每一个值a,因变量y的对应值称为函数值,记作f(a).概念学习 典例精析例3下列关于变量x,y的关系式:y=2x+3;y=x2+3;y=2|x|;④;⑤y2-3x=10,其中表示y是x的函数关系的是.判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,另一个变量有唯一确定的值与它对应.方法一个x值有两个y值与它对应 例4已知函数(1)求当x=2,3,-3时,函数的值;(2)求当x取什么值时,函数的值为0.解:(1)当x=2时,y=;当x=3时,y=;当x=-3时,y=7.(2)令解得x=即当x=时,y=0.把自变量x的值带入关系式中,即可求出函数的值. 例5:如图,已知圆柱的高是4cm,底面半径是r(cm),当圆柱的底面半径r由小变大时,圆柱的体积V(cm3)是r的函数.(1)用含r的代数式来表示圆柱的体积V,指出自变量r的取值范围.(2)当r=5,10时,V是多少(结果保留π)?圆柱的体积自变量r的取值范围是r>0.当r=5时当r=10时 当堂练习1.设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为,这个关系式中,是常量,是变量,是的函数.60s=60tt和sst2.油箱中有油30kg,油从管道中匀速流出,1h流完,则油箱中剩余油量Q(kg)与流出时间t(min)之间的函数关系式是. 3.写出下列各问题的函数关系式,并指出其中的常量与变量,自变量与函数.(1)运动员在200米一圈的跑道上训练,他跑一圈所用的时间t(秒)与跑步的速度v(米/秒)的关系式;(2)n边形的对角线条数s与边数n之间的关系式.解:(1),其中200是常量,v、t是变量,v是自变量,t是v的函数.(2),其中,-3是常量,s、n是变量,n是自变量,s是n的函数. 4.下列问题中,一个变量是否是另一个变量的函数?如果是,请指出自变量.(1)改变正方形的边长x,正方形的面积S随之变化;(2)秀水村的耕地面积是106m2,这个村人均占有耕地面积y(单位:m2)随这个村人数n的变化而变化;(3)P是数轴上的一个动点,它到原点的距离记为x,它对应的实数为y,y随x的变化而变化.解:(1)S是x的函数,其中x是自变量.(2)y是n的函数,其中n是自变量.(3)y不是x的函数.例如,到原点的距离为1的点对应实数1或-1, 变量与函数常量与变量:在一个变化的过程中,取值会发生变化的量称为变量,取值固定不变的量称为常量.课堂小结函数:一般地,如果变量y随着变量x而变化,并且对于x取的每一个值,y都有唯一的一个值与它对应,那么称y是x的函数,记作:y=f(x). 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭