返回

19.2菱形2第2课时菱形的判定定理2课件(华师大版八下)

首页 > 初中 > 数学 > 19.2菱形2第2课时菱形的判定定理2课件(华师大版八下)

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

19.2菱形第19章矩形、菱形与正方形第2课时菱形的判定定理22.菱形的判定 学习目标1.利用菱形特有性质(对角线互相垂直)来判定平行四边形是否为菱形;(重点)2.菱形的性质与判定的综合运用.(难点) 问题:上一课我们学习的菱形的判定方法有哪些?导入新课1.定义:有一组邻边相等的平行四边形叫做菱形.2.定理:四边相等的四边形是菱形.复习引入菱形的特有性质:对角线互相垂直平分对角线互相垂直平分的四边形是菱形.能否判定?思考:还有其他的判定方法吗? 做一做:先将一张长方形的纸对折,再对折,然后沿图中的虚线剪下,将纸展开,就得到了一个菱形.(1)(2)(3)(4)你能说说这样做的道理吗? 对角线互相垂直的平行四边形是菱形一前面我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形?对此你有什么猜想?猜想:对角线互相垂直的平行四边形是菱形.你能证明这一猜想吗?讲授新课 作一条两条对角线互相垂直的平行四边形.步骤:1.作两条互相垂直的直线m、n,记交点为点O;2.以点O为圆心、适当长为半径画弧,在直线m,n上分别截取相等的两组线段OA、OC和OB、OD;3.连接A、B、C、D四点,显然,它是一个对角线互相垂直的平行四边形.nmDCBA画图探究思考:所画平行四边形是菱形吗?O ABCOD已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形.∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴四边形ABCD是菱形(菱形的定义).证一证 对角线互相垂直的平行四边形是菱形AC⊥BD几何语言描述:∵在□ABCD中,AC⊥BD,∴□ABCD是菱形.ABCD菱形ABCDABCD□ABCD平行四边形的判定定理2:归纳总结 思考与动手:1.在一张纸上用尺规作图作出边长为10cm的菱形;2.想办法用一张长方形纸剪出一个菱形;3.利用长方形纸你还能想到哪些制作菱形的方法?请向同学们展示你的作品,全班交流. 例1如图,ABCD的两条对角线AC、BD相交于点O,AB=5,AO=4,BO=3.求证:四边形ABCD是菱形.ABCDO∴平行四边形ABCD是菱形.∵OA=4,OB=3,AB=5,证明:即AC⊥BD,∴AB2=OA2+OB2,∴△AOB是直角三角形, 例2如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.ABCDEFO12证明:∵四边形ABCD是矩形,∴AE∥FC,∴∠1=∠2.∵EF垂直平分AC,∴AO=OC.又∠AOE=∠COF,∴△AOE≌△COF,∴EO=FO.∴四边形AFCE是平行四边形.又∵EF⊥AC∴四边形AFCE是菱形. 练一练在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是( )A.∠ABC=90°B.AC⊥BDC.AB=CDD.AB∥CDB 例3如图,在△ABC中,DE∥BC,且2DE=BC,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(1)证明:∵DE∥BC,且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;菱形的性质与判定的综合运用二 (2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为,∴菱形的面积为.(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形.归纳 练一练如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,求平行四边形ABCD的周长.解:∵四边形ABCD为平行四边形,∴∠DAC=∠ACB,∠BAC=∠ACD,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠DAC=∠ACD,∴AD=DC,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×2=8. 当堂练习1.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.√╳╳╳2.一边长为5cm的平行四边形的两条对角线的长分别为24cm和26cm,那么平行四边形的面积是.312cm2 ABCDOE3.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形. 4.如图,在平行四边形ABCD中,AC=6,BD=8,AD=5.求AB的长.解:∵四边形ABCD为平行四边形,∴△DAO是直角三角形.∴∠DOA=90°,即DB⊥AC.∴平行四边形ABCD是菱形.(对角线互相垂直的平行四边形是菱形)∴又∵AD=5,满足∴AB=AD=5. 证明:∵MN是AC的垂直平分线,∴AE=CE,AD=CD,OA=OC,∠AOD=∠EOC=90°.∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO(ASA).∴AD=CE,OD=OE,∵OD=OE,OA=OC,∴四边形ADCE是平行四边形又∵∠AOD=90°,∴四边形ADCE是菱形.5.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.BCADOEMN 四条边都相等菱形一组邻边相等对角线互相垂直对角线互相平分一组对边平行且相等两组对边分别平行或相等四边形平行四边形两组对角分别相等课堂小结 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭