返回

2022华东师大版八下第19章矩形菱形与正方形19.1矩形第1课时矩形及其性质学案

资料简介

19.1.1矩形及其性质学习目标:   1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.学习重点:矩形的性质.学习难点:矩形的性质的灵活应用.学习过程:预习导学:1.思考:拿一个活动的平行四边形,轻轻拉动一个顶点,观察不管怎么拉,它还是一个平行四边形吗?为什么?当平行四边形移动到一个角是直角时,这时的图形是________形.归纳:矩形定义:__________________________________叫做矩形(通常也叫_________).2.学习教材【思考】.归纳矩形的性质:⑴定义:,矩形具有平行四边形的一切性质.⑵矩形性质定理1:____________________________.⑶矩形性质定理2:____________________________.3.如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于_____________的一半.4.学习教材P99例1、P100例2、P101例35.补充例题(变式):例1、已知:如图,矩形ABCD中,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.分析:(1)因为矩形四个角都是直角,因此△ABD是Rt△,若设AD=xcm,则对角线BD=(x+4)cm,由勾股定理可解出x.(2)利用直角三角形面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE×BD=AD×AB,由此可算出AE.证明:3 例2、已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.证明:随堂练习:1.填空:(1)矩形的定义中有两个条件:一是,二是.(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.2.下列说法错误的是().A、矩形的对角线互相平分B、矩形的对角线相等C、有一个角是直角的四边形是矩形D、有一个角是直角的平行四边形叫做矩形3.矩形的对角线把矩形分成的三角形中全等三角形一共有().A、2对B、4对C、6对D、8对4.已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为__cm,cm,cm,cm.5.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠EAO的度数.课堂检测:1.矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm(B)10cm(C)7.5cm(D)5cm2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.3 3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.4.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.3 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭