返回

2022华东师大版八下第17章函数及其图象17.3一次函数第3课时一次函数的性质教案

资料简介

17.3.3一次函数的性质课题一次函数的性质教学目标知识目标:掌握一次函数y=kx+b(k≠0)的性质.能根据k与b的值说出函数的有关性质.能力目标:经历探索一次函数图象性质的过程,感受k与b的值对函数性质的影响;观察图象,体会一次函数k、b的取值和直线位置的关系,提高学生数形结合能力.情感目标:经历作图过程,发展学生的总结概括能力。重点一次函数的性质。难点理解一次函数的性质。教学过程创设情境:1.一次函数的图象是一条直线,一般情况下我们画一次函数的图象,取哪两个点比较简便?2.在同一直角坐标系中,画出函数和y=3x-2的图象探究归纳1.在所画的一次函数图象中,直线经过了三个象限.2.观察图象发现在直线上,当一个点在直线上从左向右移动时,(即自变量x从小到大时),点的位置也在逐步从低到高变化(函数y的值也从小变到大).即:函数值y随自变量x的增大而增大.请同学们讨论:函数y=3x-2是否也有这种现象?发现上述两条直线都经过一、三象限.又由于直线与y轴的交点坐标是(0,b)所以,当b>0时,直线与x轴的交点在y轴的正半轴,也称在x轴的上方;当b<0时,直线与x轴的交点在y轴的负半轴,也称在x轴的下方.所以当k>0,b≠0时,直线经过一、三、二象限或一、三、四象限.3.在同一坐标系中,画出函数y=-x+2和的图象(图略).一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;(2)当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.特别地,当b=0时,正比例函数也有上述性质.当b>0,直线与y轴交于正半轴;当b<0时,直线与y轴交于正半轴.2 实践应用例1已知一次函数y=(2m-1)x+m+5,当m是什么数时,函数值y随x的增大而减小?例2已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象经过二、三、四象限,求m的取值范围.例3已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.(1)求m的值;(2)当x取何值时,0<y<4?检测反馈1.已知函数,当m为何值时,这个函数是一次函数.并且图象经过第二、三、四象限?2.已知关于x的一次函数y=(-2m+1)x+2m2+m-3.(1)若一次函数为正比例函数,且图象经过第一、第三象限,求m的值;(2)若一次函数的图象经过点(1,-2),求m的值.交流反思1.(1)当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;(2)当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.当b>0,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴;当b=0时,直线与y轴交于坐标原点.2.k>0,b>0时,直线经过一、二、三象限;k>0,b<0时,直线经过一、三、四象限;k<0,b>0时,直线经过一、二、四象限;k<0,b<0时,直线经过二、三、四象限课后作业课后反思板书设计2 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭