返回

2022华东师大版八下第17章函数及其图象17.3一次函数第2课时一次函数的图象教案

资料简介

17.3.2一次函数的图象课题一次函数的图象教学目标知识目标:1.理解一次函数和正比例函数的图象是一条直线;2.熟练地作出一次函数和正比例函数的图象,掌握k与b的取值对直线位置的影响.能力目标:1.经历一次函数的作图过程,探索某些一次函数图象的异同点;2.体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.情感目标:1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。2.加强新旧知识的联系,促进学生新的认知结构的建构。重点能熟练地作出一次函数的图象。难点理解一次函数的代数表达式与图象之间的对应关系。教学过程创设情境:前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象.(1);(2);(3)y=3x;(4)y=3x+2.探究归纳观察上面四个函数的图象,发现它们都是直线.一次函数y=kx+b(k≠0)的图象是一条直线,这条直线通常又称为直线y=kx+b(k≠0).特别地,正比例函数y=kx(k≠0)是经过原点的一条直线.请同学们在同一平面直角坐标系中画出下列函数的图象.(1)y=-x、y=-x+1与y=-x-2;(2)y=2x、y=2x+1与y=2x-2.通过观察发现:两个一次函数,当k一样,b不一样时(如y=-x、y=-x+1与y=-x-2;y=2x、y=2x+1与y=2x-2),有共同点:直线平行,都是由直线y=kx(k≠0)向上或向下移动得到;不同点:它们与y轴的交点不同.而当两个一次函数,b一样,k不一样时(如y=-x与y=2x、y=-x+1与y=2x+1、y=-x-2与y=2x-2),有共同点:它们与y轴交于同一点(0,b);2 不同点:直线不平行.实践应用例1在同一平面直角坐标系中画出下列每组函数的图象.检测反馈1.在同一坐标系中画出下列函数的图象,并说出它们有什么关系?(1)y=―2x;(2)y=―2x―4.2.(1)将直线y=3x向下平移2个单位,得到直线;(2)将直线y=-x-5向上平移5个单位,得到直线;(3)将直线y=-2x+3向下平移5个单位,得到直线.3.函数y=kx-4的图象平行于直线y=-2x,求函数的表达式.4.一次函数y=kx+b的图象与y轴交于(0,-2),且与直线平行,求它的函数表达式.交流反思通过这节课的学习,我们学到了哪些新知识?课后作业:课后反思板书设计2 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭