资料简介
8.3一元一次不等式组第8章一元一次不等式
1.通过具体操作,在解一元一次不等式组的过程中形成正确的解不等式的思路与方法;(重点、难点)2.掌握将一元一次不等式组的解集在数轴上正确的表示.学习目标
导入新课同学们,你能根据上图对话片断估计出这头大象的体重范围吗?请说说你的理由!看,这头大象好大呀,体重肯定不少于3吨!若设大象的体重为x吨,请用不等式的知识分别表示上面两位同学所谈话的内容:x≥3①x<5②情境引入
一个长方形足球场的宽为70m,如果它的周长大于350m,面积小于7630m2,求这个足球场的长的取值范围,并判断这个足球场是否可以进行国际足球比赛(注:用于国际比赛的足球场的长在100至110m之间,宽在64至75m之间).一元一次不等式组的概念及解集一讲授新课
如果设足球场的长为xm,那么它的周长就是2(x+70)m,面积为70xm2.根据已知条件,我们知道x的取值范围要使2(x+70)>350和70x<7630这两个不等式同时成立.
为此,我们用大括号把上述两个不等式联立起来,得2(x+70)>350和70x<7630像这样,把含有相同未知数的几个一元一次不等式联立起来,就组成了一个一元一次不等式组.
怎样确定上面的不等式组中x的取值范围呢?类比方程组的求解,不等式组中的各个不等式解集的公共部分,就是不等式组中的未知数的取值范围.我们把几个一元一次不等式解集的公共部分,叫作由它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫作解不等式组.
通常我们运用数轴求不等式组的解集.如图,可以用数轴表示出不等式组的解集.所以这个不等式组的解集为-3<x≤3.x>-3②x≤3①0-33公共部分①②
解由两个一元一次不等式组成的不等式组,在取各不等式的解的公共部分时,有几种不同情况?abababab同大取大同小取小大小小大中间找大大小小无处找x>bx<aa<x<b无解
填表:不等式组不等式组的解集x﹥-3-5﹤x≤-3x<-3无解练一练
下面我们来解不等式组解不等式①,得解不等式②,得①②x>105.x<109.一元一次不等式的解法二
不等式组的解集就是x>105与x<109的公共部分.我们在同一数轴上把x>105与x<109表示出来,如图所示0105109由图容易发现它们的公共部分是105<x<109,这就是由不等式①、②组成的不等式组的解集.
由此可知,这个足球场的长度在105至109m之间,从场地的大小方面来说,可以进行国际足球比赛.
解不等式②,得x>4.例1解不等式组:解:解不等式①,得x>2.①②把不等式①、②的解集在数轴上表示出来,如图:204由图可知,不等式①、②的解集的公共部分就是x>4,所以这个不等式组的解集是x>4.典例精析
例2解不等式组:①②解:解不等式①,得x>-2.解不等式②,得x>6.把不等式①、②的解集在数轴上表示出来,如图:0-26由图可知,不等式①、②的解集的公共部分就是x>6,所以这个不等式组的解集是x>6.
例3解不等式组:解解不等式①,得x<-2.解不等式②,得x>3.①②把不等式①、②的解集在数轴上表示出来,如图:由图可以看出这两个不等式的解集没有公共部分.所以,这个不等式组无解.0-23
解下列不等式组:解:(1)1<x<5;(2)-4<x≤1;(3)x<;(4)无解.当堂练习
一元一次不等式组课堂小结一元一次不等式组的概念↓利用公共部分确定不等式组的解集在数轴上分别表示各个不等式的解集解每个不等式↓一元一次不等式组的解集在数轴上的表示一元一次不等式组的解集解一元一次不等式组→↓
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。