返回

2022北师大版八下第1章三角形的证明1.1等腰三角形1.1.2等边三角形的性质教案

资料简介

等边三角形的性质课题:等边三角形的性质三维目标知识与技能使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度过程与方法熟识等边三角形的性质及判定情感态度与价值观总结代数法求几何角度,线段长度的方法教学重点:等腰三角形的性质及其应用教学难点:简洁的逻辑推理教学方法与手段:教学过程:一、复习巩固1.叙述等腰三角形的性质,它是怎么得到的?等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。2.若等腰三角形的两边长为3和4,则其周长为多少?二、新课在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。等边三角形具有什么性质呢?1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。2.你能否用已知的知识,通过推理得到你的猜想是正确的?等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。3.上面的条件和结论如何叙述?等边三角形的各角都相等,并且每一个角都等于60°。三个角都相等的三角形是等边三角形有一个叫是60°的等腰三角形是等边三角形也称为正三角形。例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。修订、增减2 分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?问题2:求∠1是否还有其它方法?三、练习巩固1.判断下列命题,对的打“√”,错的打“×”。a.等腰三角形的角平分线,中线和高互相重合()b.有一个角是60°的等腰三角形,其它两个内角也为60°()2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。教师小结:由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。作业:课本P82第7题。板书设计:等边三角形的性质等边三角形慨念教学反思:2 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭