资料简介
8.4因式分解3.分组分解法练习:把下列各式分解因式,并说明运用了分组分解法中的什么方法. (1)a2-ab+3b-3a; (2)x2-6xy+9y2-1; 解(3)am-an-m2+n2; (4)2ab-a2-b2+c2. 第(1)题分组后,两组各提取公因式,两组之间继续提取公因式. 第(2)题把前三项分为一组,利用完全平方公式分解因式,再与第四项运用平方差公式继续分解因式. 第(3)题把前两项分为一组,提取公因式,后两项分为一组,用平方差公式分解因式,然后两组之间再提取公因式. 第(4)题把第一、二、三项分为一组,提出一个“-”号,利用完全平方公式分解因式,第四项与这一组再运用平方差公式分解因式. 把含有四项的多项式进行因式分解时,先根据所给的多项式的特点恰当分解,再运用提公因式或分式法进行因式分解.在添括号时,要注意符号的变化. 这节课我们就来讨论应用所学过的各种因式分解的方法把一个多项式分解因式.二、新课 例1把am+bm+an-cm+bn-cn分解因式. 例2把a4b+2a3b2-a2b-2ab2分解因式. 例3把45m2-20ax2+20axy-5ay2分解因式.
三、课堂练习 把下列各式分解因式: (1)a2+2ab+b2-ac-bc; (2)a2-2ab+b2-m2-2mn-n2; (3)4a2+4a-4a2b+b+1; (4)ax2+16ay2-a-8axy; 五、作业 1.把下列各式分解因式:(1)x3y-xy3; (2)a4b-ab4;(3)4x2-y2+2x-y; (4)a4+a3+a+1;(5)x4y+2x3y2-x2y-2xy2; (6)x3-8y3-x2-2xy-4y2; (7)x2+x-(y2+y); (8)ab(x2-y2)+xy(a2-b2).(9)(10)
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。