返回

第8章整式乘除与因式分解8.2.2第2课时多项式除以单项式教案(沪科版七下)

资料简介

第2课时 多项式除以单项式1.复习单项式乘以多项式的运算,探究多项式除以单项式的运算规律;2.能运用多项式除以单项式进行计算并解决问题.(重点、难点)一、情境导入 1.计算:(1)-6x3y4z2÷(-x2y2);(2)9mn÷(-6mn)2·(n2);(3)6(a-b)3c5÷[-(a-b)2c]·[-2(a-b)3c4]. 2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根据多项式乘以单项式的运算归纳出多项式除以单项式的运算法则吗?二、合作探究探究点:多项式除以单项式【类型一】直接利用多项式除以单项式进行计算计算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根据多项式除以单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法总结:多项式除以单项式的实质是单项式除以单项式,计算时先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.【类型二】被除式、商式和除式的关系已知一个多项式除以2x2,所得的商是2x2+1,余式是3x-2,请求出这个多项式.解析:根据被除式、除式、商式、余式之间的关系解答.解:根据题意得2x2(2x2+1)+3x-2=4x4+2x2+3x-2,则这个多项式为4x4+2x2+3x-2.方法总结:“被除式=商×除式+余式”是解题的关键.【类型三】运用多项式除以单项式化简求值先化简,后求值:[2x(x2y-xy2)+xy(xy-x2)]÷x2y,其中x=2015,y=2014.解析:利用去括号法则先去括号,再合并同类项,然后根据除法法则进行化简,最后把x与y的值代入计算,即可求出答案.解:[2x(x2y-xy2)+xy(xy-x2)]÷x2y=[2x3y-2x2y2+x2y2-x3y]÷x2y=x-y,把x=2015,y=2014代入上式得原式=x-y=2015-2014=1.方法总结:熟练掌握去括号,合并同类项,整式的除法的法则. 变式三、板书设计1.多项式除以单项式的运算法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2.多项式除以单项式的计算在教学过程中,通过类比单项式除以单项式的学习,引导学生归纳出多项式除以单项式的运算法则,通过练习加深学生的理解,并及时反馈信息.教师可引导学生解决问题,培养学生的思维能力。 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭