资料简介
第8章实数8.1幂的运算1.同底数幂的乘法一、学习目标1.经历探索同底数幂乘法运算性质过程,进一步体会幂的意义.2.了解同底数幂乘法的运算性质,并能解决一些实际问题二、学习重点:同底数幂的乘法运算法则的推导过程以及相关计算三、学习难点:对同底数幂的乘法公式的理解和正确应用四、学习设计(一)预习准备xkb1.com预习书(二)学习过程1. 试试看:(1)下面请同学们根据乘方的意义做下面一组题:① ②=_____________=③a3.a4=_____________=a() (2)根据上面的规律,请以幂的形式直接写出下列各题的结果:===×=2. 猜一猜:当m,n为正整数时候,.=.==即am·an=(m、n都是正整数)3. 同底数幂的乘法法则:同底数幂相乘 运算形式:(同底、乘法)运算方法:(底不变、指加法)当三个或三个以上同底数幂相乘时,也具有这一性质,用公式表示为[来源:学+科+网Z+X+X+K]am·an·ap=am+n+p(m、n、p都是正整数)练习1. 下面的计算是否正确?如果错,请在旁边订正(1).a3·a4=a12 (2).m·m4=m4(3).a2·b3=ab5(4).x5+x5=2x10(5).3c4·2c2=5c6 (6).x2·xn=x2n(7).2m·2n=2m·n(8).b4·b4·b4=3b42.填空:(1)x5·()= x8(2)a·()= a6xkb1.com(3)x·x3()=x7(4)xm·( )=x3m(5)x5·x()=x3·x7=x()·x6=x·x()(6)an+1·a()=a2n+1=a·a()例1.计算(1)(x+y)3·(x+y)4 (2)[来源:学+科+网]
(3)(4)(m是正整数)变式训练.计算(1) (2)(3). (4) (5)(a-b)(b-a)4 (6) (n是正整数)拓展.1、填空(1)8=2x,则x=(2)8×4=2x,则x=(3)3×27×9=3x,则x=.2、已知am=2,an=3,求的值 3、4、已知的值。5、已知的值。回顾小结1.同底数幂相乘法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a的指数是1.
3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.5.若底数是多项式时,要把底数看成一个整体进行计算]
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。