资料简介
第3单元圆柱与圆锥1.圆柱第6课时解决问题【教学目标】1、通过观察比较,掌握不规则物体的体积的计算方法。2、培养学生观察、概括的能力,利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。【教学重难点】重点:通过观察比较,掌握不规则物体的体积的计算方法。难点:培养利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。【教学过程】一、问题引入1、提出问题师:在学习长方体和正方体的体积时,我们遇到过求不规则的物体的体积的问题,你们还记得是怎样解决的吗?2、揭示课题:解决问题二、探究新知1、教学例7(1)读题,理解题意:条件:瓶子内直径是8厘米,瓶内水高7厘米,瓶子倒置后无水部分的高18厘米的圆柱。问题:这个瓶子的容积是多少?(2)质疑。这个瓶子是圆柱吗?怎样求出它的容积?(3)实物演示。用两个相同的酒瓶,内装同样多的水进行演示。(4)尝试解决。 3.14×(8÷2)2×7+3.14×(8÷2)2×18
=3.14×16×(7+18)=1256(cm3)=1256(ml)答:这个瓶子的容积是1256ml。2、引导归纳。2、求不规则的物体的体积的方法:可以利用体积不变的特性,把不规则图形转化成规则的图形再求容积。三、巩固练习1、完成教材第27页的“做一做”习题。2、完成练习五的第3题。【教学反思】在活动中进一步使学生体会“转化”方法的价值,比如,回顾上学期所学的圆的面积推导公式,从而理解圆柱的底面积与长方体底面积相等。这样有利于培养学生应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。