返回

北师大版九下第2章二次函数5二次函数与一元二次方程第1课时二次函数与一元二次方程间的关系说课稿

资料简介

二次函数与一元二次方程教学目标一、教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。2、理解二次函数与x轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根。3、理解一元二次方程的根就是二次函数与y=h交点的横坐标。二、能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神2、通过观察二次函数与x轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。3、通过学生共同观察和讨论,培养合作交流意识。三、情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。2、具有初步的创新精神和实践能力。教学重点1.体会方程与函数之间的联系。2.理解何时方程有两个不等的实根、两个相等的实根和没有实根。3.理解一元二次方程的根就是二次函数与y=h交点的横坐标。教学难点1、探索方程与函数之间的联系的过程。2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。教学方法:讨论探索法教学过程:1、设问题情境,引入新课我们已学过一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)的关系,你还记得吗?它们之间的关系是:当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数的图像与x轴交点的横坐标即为一元一次方程kx+b=0的解。4 现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。2、新课讲解我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式 h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度。一个小球从地面被以40m/s 速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么(1)h与t的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?小组交流,然后发表自己的看法。学生交流:(1)h与t的关系式是h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面抛起,所以h0=0。把v0,h0带入上式即可求出h与t的关系式h=-5t2+40t (2)小球落地时h为0,所以只要令h=-5t2+v0t+h0中的h=0求出t即可。也就是-5t2+40t=0t2-8t=0∴t(t-8)=0∴t=0或t=8t=0时是小球没抛时的时间,t=8是小球落地时的时间。也可以观察图像,从图像上可看到t=8时小球落地。议一议二次函数①y=x2+2x②y=x2-2x+1③y=x2-2x+2的图像如下图所示(1)每个图像与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下,一元二次方程x2-2x+2=0有根吗?(3)二次函数的图像y=ax2+bx+c与x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?(课件展示)学生讨论后,解答如下:(1)二次函数①y=x2+2x②y=x2-2x+1③y=x2-2x+2的图像与x轴分别有两个交点、一个交点,没有交点。(2)一元二次方程x2+2x=0有两个根0,-2;x2-2x+1=0有两个相等的实数根1或一个根1;方程x2-2x+2=0没有实数根(3)从图像和讨论知,二次函数y=x2+2x与x轴有两个交点(0,0),(-2,0),方程x2+2x=0有两个根0,-2;4 二次函数y=x2-2x+1的图像与x轴有一个交点(1,0),方程x2-2x+1=0有两个相等的实数根1或一个根1二次函数y=x2-2x+2的图像与x轴没有交点,方程x2-2x+2=0没有实数根由此可知,二次函数y=ax2+bx+c的图像与x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根。小结:二次函数y=ax2+bx+c的图像与x轴交点有三种情况:有两个交点、一个交点、没有焦点。当二次函数y=ax2+bx+c的图像与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根。基础练习1、判断下列各抛物线是否与x轴相交,如果相交,求出交点的坐标。(1)y=6x2-2x+1  (2)y=-15x2+14x+8(3)y=x2-4x+4 2、已知抛物线y=x2-6x+a的顶点在x轴上,则a=           ;若抛物线与x轴有两个交点,则a的范围是             3、已知抛物线y=x2-3x+a+1与x轴最多只有一个交点,则a的范围是            。    4、已知抛物线y=x2+px+q与x轴的两个交点为(-2,0),(3,0),则p=   ,q=      。5.已知抛物线y=-2(x+1)2+8  ①求抛物线与y轴的交点坐标;②求抛物线与x轴的两个交点间的距离.6、抛物线y=ax2+bx+c(a≠0)的图象全部在轴下方的条件是(    )(A)   a<0 b2-4ac≤0(B)a<0 b2-4ac>0(B)   (C)a>0 b2-4ac>0(D)a<0 b2-4ac<0想一想在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是怎样知道的?学生交流:在式子h=-5t2+v0t+h0中v0为40m/s,h0=0,h=60m,代入上式得   -5t2+40t=60   t2?8t+12=0∴t=2或t=6因此当小球离开地面2秒和6秒时,高度是60m。课堂练习 4 小结:本节课学习了如下内容:1、若一元二次方程ax2+bx+c=0的两个根是x1、x2,  则抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(x1,0 ), B(x2,0)2、一元二次方程ax2+bx+c=0与二次三项式ax2+bx+c及二次函数y=ax2+bx+c这三个“二次”之间互相转化的关系。体现了数形结合的思想3、二次函数y=ax2+bx+c何时为一元二次方程?4 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭