资料简介
www.ks5u.com课题:充要条件课时:004课型:新授课教学目标知识与技能目标:(1)正确理解充要条件的定义,了解充分而不必要条件,必要而不充分条件,既不充分也不必要条件的定义.(2)通过学习,使学生明白对条件的判定应该归结为判断命题的真假,.过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.情感、态度与价值观:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.教学重点与难点重点:1、正确区分充要条件;2、正确运用“条件”的定义解题难点:正确区分充要条件.教学过程1.学生思考、分析已知p:整数a是2的倍数;q:整数a是偶数.请判断:p是q的充分条件吗?p是q的必要条件吗?分析:要判断p是否是q的充分条件,就要看p能否推出q,要判断p是否是q的必要条件,就要看q能否推出p.易知:pÞq,故p是q的充分条件;又qÞp,故p是q的必要条件.此时,我们说,p是q的充分必要条件2.充要条件一般地,如果既有pÞq,又有qÞp就记作pÛq.此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果pÛq,那么p与q互为充要条件.3.例题解析,例1:下列各题中,哪些p是q的充要条件?(1)p:b=0,q:函数f(x)=ax2+bx+c是偶函数;(2)p:x>0,y>0,q:xy>0;(3)p:a>b,q:a+c>b+c;(4)p:x>5,,q:x>10(5)p:a>b,q:a2>b2分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p.解:命题(1)和(3)中,pÞq,且qÞp,即pÛq,故p是q的充要条件;命题(2)中,pÞq,但q ¹> p,故p不是q的充要条件;命题(4)中,p¹>q,但qÞp,故p不是q的充要条件;命题(5)中,p¹>q,且q¹>p,故p不是q的充要条件;例2:已知:⊙O的半径为r,圆心O到直线l的距离为d.求证:d=r是直线l与⊙O相切的充要条件.分析:设p:d=r,q:直线l与⊙O相切.要证p是q的充要条件,只需要分别证明充分性(pÞq)和必要性(qÞp)即可.证明过程略.例3、设p是r的充分而不必要条件,q是r的充分条件,r成立,则s成立.s是q的充分条件,问(1)s是r的什么条件?(2)p是q的什么条件?4.四种条件:一般地,若pÞq,但q ¹> p,则称p是q的充分但不必要条件;若p¹>q,但q Þ p,则称p是q的必要但不充分条件;若pÛq,则p与q互为充要条件.若p¹>q,且q ¹> p,则称p是q的既不充分也不必要条件.在讨论p是q的什么条件时,就是指以下四种之一: ①若pÞq,但q ¹> p,则p是q的充分但不必要条件;, ②若qÞp,但p ¹> q,则p是q的必要但不充分条件; ③若pÞq,且qÞp,则p是q的充要条件; ④若p ¹> q,且q ¹> p,则p是q的既不充分也不必要条件.5.巩固练习:(1).(15年安徽文科改编)设p:x<3,q:-1
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。