资料简介
北师大版数学九年级上册期末测试题姓名:班级:等级:说明:本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分一、选择题(本大题含10个小题,每小题3分,共30分)1.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.2.如图,一次函数y=kx+b与反比例函数y=6x(x>0)的图象交于A(m,6),B(3,n)两点,与x轴交于点C,与y轴交于点D,下列结论:①一次函数解析式为y=﹣2x+8;②AD=BC;③kx+b﹣6x<0的解集为0<x<1或x>3;④△AOB的面积是8,其中正确结论的个数是()A.4个B.3个C.2个D.1个3.某反比例函数的图象经过点(-1,6),则此函数图象也经过点().A.2,-3B.-3,-3C.2,3D.-4,64.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是()ABCD5.如图,△ABC中,点D,E分别在AB,AC边上,DE//BC,若AD=2DB,则△ADE与△ABC的面积比为()ABCD6.下列四个表格表示的变量关系中,变量y是x的反比例函数的是()\n7.如果ab=cd,且abcd≠0,则下列比例式不正确的是()A.B.C.D.8.已知一次函数的图象经过第一、三、四象限,则反比例函数的图象在()A.一、二象限 B.一、三象限 C.三、四象限 D.二、四象限9.关于x的一元二次方程有实数根,则k的取值范围是()A.B.C.D.10.书画经装后更便于收藏,如图,画心ABCD为长90cm、宽30cm的矩形,装裱后整幅画为矩形,两矩形的对应边互相平行,且AB与A'B的距离、CD与的距离都等于4cm.当AD与的距离、BC与B'C'距离都等于acm,且矩形ABCD∽矩形时,整幅书画最美观,此时,a的值为()A.4B.6C.12D.24二、填空题(本大题含5个小题,每小题2分,共10分)11.如图,已知l1∥l2∥l3,如果AB:BC=2:3,DE=4,则EF的长是________.12.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是________.13.如图,现有一张矩形纸片ABCD,其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,使点B落在梯形AECD内,记为点B′,那么B′、C两点之间的距离是\n________cm.14新年期间,某游乐场准备推出幸运玩家抽奖活动,其规则是:在一个不透明的袋子里装有若干个红球和白球(每个球除颜色外都完全相同),参加抽奖的人随机摸一个球,若摸到红球,则可获赠游乐场通票一张.游乐场预估有300人参加抽奖活动,计划发放游乐场通票60张,则袋中红、白两种颜色小球的数量比应为______________15.如图,点A,C分别在反比例函数(x<0)与(x>0)的图象上,若四边形OABC是矩形,且点B恰好在y轴上,则点B的坐标为______________三、解答题(本大题含8个小题,共60分)16.解下列方程:(每题4分,共8分)(1)x2-8x+1=0;(2)x(x-2)+x-2=017.(本题6分)已知矩形ABCD,AE平分∠DAB交DC的延长线于点E,过点E作EF⊥AB,垂足F在边AB的延长线上,求证:四边形ADEF是正方形.\n18.(本题9分)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C均为这三根木杆的俯视图(点A,B,C在同一直线上).(1)图1中线段AD是点A处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;(2)图2中线段AD,BE分别是点A,B处的木杆在路灯照射下的影子,其中DE∥AB,点O是路灯的俯视图,请在图2中画出表示点C处木杆在同一灯光下影子的线段;(3)在(2)中,若O,A的距离为2m,AD=2.4m,OB=1.5m,则点B处木杆的影子线段BE的长为___________m19.(本题6分)王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y万元,x个月还清,且y是x的反比例函数,其图象如图所示(1)求y与x的函数关系式;(2)王叔叔购买的商品房的总价是__________万元;(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?\n20.(本题6分)新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.21.(本题6分)为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元?22.(本题12分)综合与实践:问题情境:如图1,矩形ABCD中,BD为对角线,\n,且k>1.将△ABD以B为旋转中心,按顺时针方向旋转,得到△FBE(点D的对应点为点E,点A的对应点为点F),直线EF交直线AD于点G(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF相似,这个三角形是_______,它与△ABF的相似比为______(用含k的式子表示);数学思考:(2)如图2,当点E落在DC边的延长线上时,点F恰好落在矩形ABCD的对角线BD上,此时k的值为______实践探究(3)如图3,当点E恰好落在BC边的延长线上时,求证:CE=FG;(4)当k=时,在△ABD绕点B旋转的过程中,探究下面的问题:请从A,B两题中任选一题作答:A:当AB的对应边FB与AB垂直时,直接写出的值.\nB:当AB的对应边FB在直线BD上时,直接写出的值23.(本题12分)如图1,平面直角坐标系中,△OAB的顶点A,B的坐标分别为(-2,4)、(-5,0).将△OAB沿OA翻折,点B的对应点C恰好落在反比例函数(k≠0)的图象上(1)判断四边形OBAC的形状,并证明.(2)直接写出反比例函数(k≠0)的表达式.(3)如图2,将△OAB沿y轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB重叠部分的面积为S.探究下列问题请从A,B两题中任选一题作答,我选择___________A:若点B的对应点B’恰好落在反比例函数(k≠0)的图象上,求m的值,并直接写出此时S的值B:若S=,求m的值;\n(4)如图3,连接BC,交AO于点D,点P是反比例函数(k≠0)的图象上的一点,请从A,B两题中任选一题作答,我选择____________A:在x轴上是否存在点Q,使得以点O,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P,Q的坐标;若不存在,说明理由;B:在坐标平面内是否存在点Q,使得以点A,O,P,Q为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q的坐标;若不存在,说明理由。参考答案一、选择题(本大题含10个小题,每小题3分,共30分)1.C2.A3.A4.A5.B6.C7.A8.D9.C10.C二、填空题(本大题含5个小题,每小题2分,共10分)11.612.413.18514.1:415.B(0,)三、解答题(本大题含8个小题,共60分)16.解下列方程:(每题4分,共8分)(1)x2-8x+1=0;解:移项得:x2-8x=-1配方得:x2-8x+42=-1+42\n即(x-4)2=15直接开平方得∴原方程的根为(2)x(x-2)+x-2=0解:提取公因式(x-2)得(x-2)(x+1)=0∴原方程的根为17.(本题6分)已知矩形ABCD,AE平分∠DAB交DC的延长线于点E,过点E作EF⊥AB,垂足F在边AB的延长线上,求证:四边形ADEF是正方形.【解析】∵矩形ABCD∴∠D=∠DAB=90°,∵EF⊥AB∴∠F=90°∴四边形ADEF是矩形∵∠D=90°∴ED⊥DA∵AE平分∠DAB,EF⊥AB∴ED=EF∴四边形ADEF是正方形18.(本题9分)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C均为这三根木杆的俯视图(点A,B,C在同一直线上).(1)图1中线段AD是点A处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;(2)图2中线段AD,BE分别是点A,B处的木杆在路灯照射下的影子,其中DE∥AB,点O是路灯的俯视图,请在图2中画出表示点C处木杆在同一灯光下影子的线段;\n(3)在(2)中,若O,A的距离为2m,AD=2.4m,OB=1.5m,则点B处木杆的影子线段BE的长为___________m【解析】(1)如图1,线段BE,CF即为所求(太阳光是平行光,考查平行投影)(2)如图2,线段CG即为所求;(考查点投影)⑶1.8∵DE//AB∴即19.(本题6分)王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y万元,x个月还清,且y是x的反比例函数,其图象如图所示(1)求y与x的函数关系式;(2)王叔叔购买的商品房的总价是__________万元;(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?【解析】(1)设y与x之间的函数关系式为(k≠0).根据题意,得点(120,0.5)在的图象上,∴解得k=60\n∴y与x之间的函数关系式为(x>0)(2)90;∵王叔叔每月偿还贷款本金y万元,x个月还清∴贷款金额xy=60万元∴王叔叔购买的商品房的总价为首付与贷款金额的和即30+60=90(万元)(3)2000元=0.2万元根据题意,得y=0.2,x=300由图,y≤2000的图像位于Ⅱ区域即x≥300∴至少需要300个月还清.20.(本题6分)新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.【解析】转动转盘两次所有可能出现的结果列表如下:\n由列表可知共有12种结果,每种结果出现的可能性相同小明恰好展示“唱歌”和“演奏”才艺的结果有2种:(1,4),(4,1)所以小明恰好展示“唱歌”和“演奏”才艺的概率是.21.(本题6分)为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元?解:设这种商品的涨价x元,根据题意,得(40-30+x)(600-10x)=10000即(10+x)(60-x)=1000解得x1=10,x2=40∴售价为40+10=50或40+40=80∵售价在40元至60元范围内∴售价应定为50元答:售价应定为50元.22.(本题12分)综合与实践:问题情境:如图1,矩形ABCD中,BD为对角线,,且k>1.将△ABD以B为旋转中心,按顺时针方向旋转,得到△FBE(点D的对应点为\n点E,点A的对应点为点F),直线EF交直线AD于点G(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF相似,这个三角形是_______,它与△ABF的相似比为______(用含k的式子表示);【答案】(1)△DBE;【解析】本题考查子母牵手模型由旋转性质可得△ABD≌△FBE∴BA=BF,BD=BE,∠ABD=∠FBE∴∴△ABF∽△DBE∵∴△DBE与△ABF相似比为数学思考:(2)如图2,当点E落在DC边的延长线上时,点F恰好落在矩形ABCD的对角线BD上,此时k的值为______【答案】【解析】由旋转性质可得△ABD≌△FBE∴BD=BE,AD=FE∵矩形ABCD∴AD=BC∴EF=BC∵(等面积转换)∴BD=DE∴等边三角形BDE∴实践探究(3)如图3,当点E恰好落在BC边的延长线上时,求证:CE=FG;【解析】(首推方法2)方法1:常规法设EF与BD交于点O\n由旋转性质可得△ABD≌△FBE∴∠ADB=∠FEB,BD=BE,AD=FE,∵四边形ABCD是矩形,AD//BC,AD=BC∴∠ADB=∠DBC,∠FEB=∠EGD∠ADB=∠EGD,∠FEB=∠DBCOD=OG,OE=OBOD+OB=OG+OE,即BD=GE∵BD=BE∴BE=EG∵CE=BE-BC,GF=GE-EF,E且BC=AD=FF∴CE=GE方法2面积法由旋转性质可得△ABD≌△FBE∴∠BAD=∠BFE,BA=BF,AD=FE,∵四边形ABCD是矩形,AD//BC,AB=DC∴∵BA=BF,AB=DC∴DC=BF∴BE=GE∵CE=BE-BC,GF=GE-EF,E且BC=AD=FF∴CE=GE(4)当k=时,在△ABD绕点B旋转的过程中,利用图4探究下面的问题请从A,B两题中任选一题作答,我选择A:当AB的对应边FB与AB垂直时,直接写出的值.【答案】【解析】如图\nB:当AB的对应边FB在直线BD上时,直接写出的值【答案】【解析】如图情况1:情况2:23.(本题12分)如图1,平面直角坐标系中,△OAB的顶点A,B的坐标分别为(-2,4)、(-5,0).将△OAB沿OA翻折,点B的对应点C恰好落在反比例函数(k≠0)的图象上\n(1)判断四边形OBAC的形状,并证明.【解析】(1)四边形OBAC是菱形证明:过点A作AE⊥x轴于点E∵A(-2,4)∴OE=2,AE=4∵B(-5,0)∴BE=OB-OE=3在Rt△ABE中,由勾股定理得AB==5∴AB=BO∵△AOB沿AO折叠,点B的对应点是点C∴AB=AC,OB=OC∴AB=OB=AC=OC.∴四边形OBAC是菱形(2)直接写出反比例函数(k≠0)的表达式.【答案】【解析】∴C(3,4)∵C恰好落在反比例函数的图象上∴∴(3)如图2,将△OAB沿y轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB重叠部分的面积为S.探究下列问题请从A,B两题中任选一题作答,我选择___________A:若点B的对应点B’恰好落在反比例函数(k≠0)的图象上,求m的值,并直接写出此\n时S的值【解析】连接BB’△OAB沿y轴向下平移得到△OA’B',BB’∥y轴,BB’=m∵B(-5,0)∴点B'的横坐标为-5将x=-5代入.得y=-2.4B'(-5,-2,4),BB’=2.4,即m=2.4B:若S=,求m的值;【解析】连接AA′并延长AA’交x轴于点H,设A'B',A’O′交OB于点M,N则AA′=m,由平移可知∠MAN=∠BAO,AH⊥OB,A’M∥AB,∴△A’MN∽△ABO∵AH=4,∴∴AA’=AH-A’H=4-,即m=4-(4)如图3,连接BC,交AO于点D,点P是反比例函数(k≠0)的图象上的一点,请从A,B两题中任选一题作答,我选择____________A:在x轴上是否存在点Q,使得以点O,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P,Q的坐标;若不存在,说明理由;【答案】存在,点P与Q的坐标如下:P1(6,2)与Q1(7,0);P2(6,-2)与Q2(-7,0);P3(-6,-2)与Q3(-7,0);\n【解析】由题意D为AO中点∵A(-2,4)∴D(-1,2)设Q(t,0),P()OP为对角线:∴P1(6,2)与Q1(7,0)OD为对角线:∴P2(6,-2)与Q2(-7,0);PD为对角线:∴P3(-6,-2)与Q3(-7,0)B:在坐标平面内是否存在点Q,使得以点A,O,P,Q为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q的坐标;若不存在,说明理由【答案】存在,点Q的坐标如下【解析】先求P点坐标,分别过O、A作直线交于P1,P2,P3,P4设P2P4所在直线为y=kx,P2(m,n)∴n=mk由A(-2,4)易得tan∠1=tan∠2=则直线与联立解得∴,∴同理\n设P1P3所在直线为+b将A(-2,4)代入可得b=5与联立解得∴∴同理
查看更多