资料简介
16.3二根次式的加减第十六章二次根式导入新课讲授新课当堂练习课堂小结第1课时二次根式的加减
学习目标1.了解二次根式的加、减运算法则.(重点)2.会用二次根式的加、减运算法则进行简单的运算.(难点)
问题1满足什么条件的根式是最简二次根式?问题2化简下列两组二次根式,每组化简后有什么共同特点?(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.化简后被开方数相同导入新课复习引入
问题3有八只小白兔,每只身上都标有一个最简二次根式,你能根据被开方数的特征将这些小白兔分到四个不同的栅栏里吗?
aaaaaaaaaa=+在七年级我们就已经学过单项式加单项式的法则.观察下图并思考.由上图,易得2a+3a=5a.当a=时,分别代入左右得;当a=时,分别代入左右得;......讲授新课在二次根式的加减运算中可以合并的二次根式一你发现了什么?
因为,由前面知两者可以合并.你又有什么发现吗?当a=,b=时,得2a+3b=.a2a+3bb=+bba这两个二次根式可以合并吗?前面依次往下推导,由特殊到一般易知二次根式的被开方数相同可以合并.继续观察下面的过程:
归纳总结将二次根式化成最简式,如果被开方数相同,则这样的二次根式可以合并.注意:判断几个二次根式是否可以合并,一定都要化为最简二次根式再判断.合并的方法与合并同类项类似,把根号外的因数(式)相加,根指数和被开方数(式)不变.如:
例1若最简根式与可以合并,求的值.解:由题意得解得即典例精析确定可以合并的二次根式中字母取值的方法:利用被开方数相同,根指数都为2,列关于待定字母的方程求解即可.归纳
【变式题】如果最简二次根式与可以合并,那么要使式子有意义,求x的取值范围.解:由题意得3a-8=17-2a,∴a=5,∴∴20-2x≥0,x-5>0,∴5<x≤10.
练一练1.下列各式中,与是同类二次根式的是()A.B.C.D.D2.与最简二次根式能合并,则m=_____.13.下列二次根式,不能与合并的是________(填序号).②⑤
二次根式的加减及其应用二思考现有一块长7.5dm、宽5dm的木板,能否采用如图的方式,在这块木板上截出两个分别是8dm2和18dm2的正方形木板?7.5dm5dm问题1怎样列式求两个正方形边长的和?S=8dm2S=18dm2
问题2所列算式能直接进行加减运算吗?如果不能,把式中各个二次根式化成最简二次根式后,再试一试(说出每步运算的依据).(化成最简二次根式)(逆用分配律)∴在这块木板上可以截出两个分别是8dm2和18dm2的正方形木板.解:列式如下:在有理数范围内成立的运算律,在实数范围内仍然成立.
归纳总结二次根式的加减法法则:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.(1)化——将非最简二次根式的二次根式化简;加减法的运算步骤:(2)找——找出被开方数相同的二次根式;(3)并——把被开方数相同的二次根式合并.“一化简二判断三合并”
化为最简二次根式用分配律合并整式加减二次根式性质分配律整式加减法则依据:二次根式的性质、分配律和整式加减法则.基本思想:把二次根式加减问题转化为整式加减问题.
典例精析例2计算:解:
例3计算:解:有括号,先去括号
例4已知a,b,c满足.(1)求a,b,c的值;(2)以a,b,c为三边长能否构成三角形?若能构成三角形,求出其周长;若不能,请说明理由.解:(1)由题意得;(2)能.理由如下:∵即a<c<b,又∵∴a+c>b,∴能构成三角形,周长为分析:(1)若几个非负数的和为零,则这几个非负数必须为零;(2)根据三角形的三边关系来判断.
【变式题】有一个等腰三角形的两边长分别为,求其周长.解:当腰长为时,∵∴此时能构成三角形,周长为当腰长为时,∵∴此时能构成三角形,周长为二次根式的加减与等腰三角形的综合运用,关键是要分类讨论及会比较两个二次根式的大小.归纳
练一练1.下列计算正确的是( )A.B.C.D.C2.已知一个矩形的长为,宽为,则其周长为______.
当堂练习1.二次根式:中,与能进行合并的是()A.B.C.D.2.下列运算中错误的是()A.B.C.D.AC
3.三角形的三边长分别为则这个三角形的周长为__________.4.计算:
解:5.计算:
解:
6.下图是某土楼的平面剖面图,它是由两个相同圆心的圆构成.已知大圆和小圆的面积分别为763.02m2和150.72m2,求圆环的宽度d(π取3.14).d
解:设大圆和小圆的半径分别为R,r,面积分别为,,由,可知则答:圆环的宽度为d
7.已知a,b都是有理数,现定义新运算:a*b=,求(2*3)-(27*32)的值.解:∵a*b=,∴(2*3)-(27*32)===能力提升:
课堂小结二次根式加减法则注意运算顺序运算原理一般地,二次根式的加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.运算律仍然适用与实数的运算顺序一样
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。