返回

5.3.2命题、定理、证明教案1

首页 > 初中 > 数学 > 5.3.2命题、定理、证明教案1

5.3.2命题、定理、证明教案1

  • 2022-01-26 21:19:32
  • 3页
  • 626.73 KB
点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

5.3.2 命题、定理、证明                 1.理解命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点)2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对命题举反例.(难点)一、情境导入2015年10月,屠呦呦因发现青蒿素治疗疟疾的新疗法获诺贝尔生理学或医学奖.屠呦呦是第一位获得诺贝尔科学奖项的中国本土科学家、第一位获得诺贝尔生理医学奖的华人科学家.青蒿素是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物.其对鼠疟原虫红内期超微结构的影响,主要是疟原虫膜系结构的改变,该药首先作用于食物泡膜、表膜、线粒体、内质网,此外对核内染色质也有一定的影响.青蒿素的作用方式主要是干扰表膜-线粒体的功能.可能是青蒿素作用于食物泡膜,从而阻断了营养摄取的最早阶段,使疟原虫较快出现氨基酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡.要读懂这段报道,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:命题的定义与结构【类型一】命题的判断下列语句中,不是命题的是(  )A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线解析:根据命题的定义,看其中哪些选项是判断句,其中只有D选项不是判断句.故选D.方法总结:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.【类型二】把命题写成“如果……那么……”的形式把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.解:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(2)如果两个角是相等的角,那么它们的余角相等.方法总结:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺. 【类型三】命题的条件和结论写出命题“平行于同一条直线的两条直线平行”的条件和结论.解析:先把命题写成“如果……那么……”的形式,再确定条件和结论.解:把命题写成“如果……那么……”的形式:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以命题的条件是“两条直线都与第三条直线平行”,结论是“这两条直线也互相平行”.方法总结:每一个命题都一定能用“如果……那么……”的形式来叙述.在“如果”后面的部分是“条件”,在“那么”后面的部分是“结论”.探究点二:真命题与假命题下列命题中,是真命题的是(  )A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=0解析:选项A中,a·b>0可得a、b同号,可能同为正,也可能同为负,是假命题;选项B中,a·b<0可得a、b异号,所以错误,是假命题;选项C中,a·b=0可得a、b中必有一个字母的值为0,但不一定同时为零,是假命题;选项D中,若a·b=0,则a=0或b=0或二者同时为0,是真命题.故选D.方法总结:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.探究点三:证明与举反例【类型一】命题的证明求证:两条直线平行,一组内错角的平分线互相平行.解析:按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根据平行线的判定方法来证明.解:如图,已知AB∥CD,直线AB,CD被直线MN所截,交点分别为P,Q,PG平分∠BPQ,QH平分∠CQP,求证:PG∥HQ.证明:∵AB∥CD(已知),∴∠BPQ=∠CQP(两直线平行,内错角相等).又∵PG平分∠BPQ,QH平分∠CQP(已知),∴∠GPQ=∠BPQ,∠HQP=∠CQP(角平分线的定义),∴∠GPQ=∠HQP(等量代换),∴PG∥HQ(内错角相等,两直线平行).方法总结:证明与图形有关的命题时,正确分清命题的条件和结论是证明的关键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明.【类型二】举反例举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0. 解析:分清题目的条件和结论,所举的例子满足条件但不满足结论即可.解:(1)两条直线平行形成的内错角,这两个角不是对顶角,但是它们相等;(2)当a=5,b=0时,ab=0,但a+b≠0.方法总结:举反例时,所举的例子应当满足题目的条件,但不满足题目的结论.举反例时常见的几种错误:①所举例子满足题目的条件,也满足题目的结论;②所举例子不满足题目的条件,但满足题目的结论;③所举例子不满足题目的条件,也不满足题目的结论.三、板书设计命题本节课通过命题及其证明的学习,让学生感受到要说明一个定理成立,应当证明;要说明一个命题是假命题,可以举反例.同时让学生感受到数学的严谨,初步养成学生言之有理、落笔有据的推理习惯,发展初步的演绎推理能力。 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭