返回

小学数学人教版六下第五单元:2 “鸽巢问题”的具体应用 一课时教案

首页 > 小学 > 数学 > 小学数学人教版六下第五单元:2 “鸽巢问题”的具体应用 一课时教案

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

“鸽巢问题”的具体应用教材第70、第71页。1.在了解简单的“抽屉原理”的基础上,使学生会用此原理解决简单的实际问题。2.提高学生有根据、有条理地进行思考和推理的能力。3.通过用“抽屉原理”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。引导学生把具体问题转化为“抽屉问题”,找出这里的“抽屉”是什么,“抽屉”有几个,再利用“抽屉原理”进行反向推理。课件、纸盒1个,红球、蓝球各4个。1.讲《月黑风高穿袜子》的故事。一天晚上,毛毛房间的电灯忽然坏了,伸手不见五指。这时他又要出去,5 于是他就摸床底下的袜子。他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑暗中,无法知道哪两只是颜色相同的。毛毛想拿最少数目的袜子出去,在外面借街灯配成相同颜色的一双。你们知道最少应该拿几只袜子出去吗?2.在学生猜测的基础上揭示课题。教师:这节课我们利用“抽屉原理”解决生活中的实际问题。(板书:“抽屉原理”的具体应用)1.课件出示例3。盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?2.学生自由猜测。可能出现:摸2个、3个、4个、5个等。说说你的理由。3.学生摸球验证。按猜测的不同情况逐一验证,说明理由。摸2个球可能出现的情况:1红1蓝;2个红球;2个蓝球。摸3个球可能出现的情况:2红1蓝;2蓝1红;3红;3蓝。摸4个球可能出现的情况:2红2蓝;3蓝1红;3红1蓝;4红;4蓝。摸5个球可能出现的情况:4红1蓝;3蓝2红;3红2蓝;4蓝1红。教师:通过验证,说说你们得出了什么结论。小结:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸3个球。4.引导学生把具体问题转化为“抽屉问题”。教师:生活中像这样的例子很多,我们不能总是猜测或动手试验吧,能不能把这道题与前面所讲的“抽屉原理”联系起来进行思考呢?(1)思考。①“摸球问题”与“抽屉原理”有怎样的联系?②应该把什么看成“抽屉”?有几个“抽屉”?要分放的东西是什么?③得出什么结论?(2)小组讨论。5 (3)学生汇报,引导学生把具体问题转化为“抽屉问题”。教师讲解:因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一抽屉”。这样,把“摸球问题”转化成“抽屉问题”,即“只要分的物体个数比抽屉个数多,就能保证有一个抽屉至少有2个球”。从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个“抽屉”里各拿了1个球,不管从哪个“抽屉”里再拿1个球,都有2个球是同色的,假设最少要摸a个球,即(a)÷2=1……(b),当b=1时,a就最小。所以一次至少应拿出1×2+1=3(个)球,就能保证有2个球同色。结论:要保证摸出2个同色的球,摸出的球的数量至少要比颜色种数多1。【设计意图:在实际问题和“鸽巢问题”之间架起一座桥梁并不是一件容易的事。因此,教师应有意识地引导学生朝这个方向思考,慢慢去感悟。逐步引导学生把具体问题转化为“鸽巢问题”,并找出这里的“鸽巢”是什么,“鸽巢”有几个】师:在本节课的学习中,你有哪些收获?学生自由交流各自的收获、体会。“抽屉原理”的具体应用A类1.某班有个小书架,40个同学可以任意借阅,小书架上至少要有多少本书,才能保证至少有一个同学能借到两本或两本以上的书?2.有4双不同颜色的手套,至少拿几只手套才能保证有两只手套是成对的?(考查知识点:鸽巢问题;能力要求:运用“鸽巢问题”的原理解决实际问题)B类有红色、白色、黑色的筷子各10根混放在一起,如果让你闭上眼睛去摸,5 你至少要摸出几根才能保证有2根筷子是同色的?为什么?至少摸出几根,才能保证有4根同色的筷子?为什么?(考查知识点:鸽巢问题;能力要求:运用“鸽巢问题”的原理解决问题)课堂作业新设计A类:1.将40个同学看作40个“抽屉”,书看作被分的物体,由“抽屉原理”知:要保证有一个抽屉中至少有两个物体,物体数至少为40+1=41(个)。即小书架上至少要有41本书。2.5只B类:把三种颜色的筷子当作三个“抽屉”,根据“抽屉原理”可知:至少拿4根筷子,才能保证有2根同色筷子。从最特殊的情况想起,假设三种颜色的筷子各拿了3根,也就是在三个“抽屉”里各拿了3根筷子,不管在哪个“抽屉”里再拿1根筷子,就有4根筷子是同色的,所以一次至少应拿出3×3+1=10(根)筷子,才能保证有4根筷子同色。教材习题第70页“做一做”1.“六年级里至少有两人的生日是同一天”,这种说法是正确的。因为如果一年当中每天都有一名学生过生日(闰年366天),则最多有366名学生的生日都不是在同一天,还剩下1名学生;剩下的这一名学生生日无论在哪一天,都一定会有两人的生日是相同的,即他们的生日在同一天。“六(2)班中至少有5人在同一个月出生的”这种说法是正确的。因为49÷12=4(人)……1(人),可知如果每4人是同一个月出生的,还剩下1人。把剩下的1人再定为其中任意一个月出生的,则六(2)班中至少有5人是同一个月出生的。2.至少取5个球,可以保证取到两个颜色相同的球。第71页“练习十三”1.若每个属相都有一位老师,这样只有12位老师,所以第13位老师的属相无论是什么,他们中至少有2个人的属相是相同的。2.若每一镖都低于9环,5镖的成绩最高是40环,因此至少有一镖不低于9环。3.若每一种颜色涂得都少于3个面,两种颜色涂得面的总数就少于6个面,因此至少有3个面涂着的颜色相同。5 4.每次至少拿出4根才能保证一定有2根同色的筷子;如果要保证有2双筷子至少要拿出6根。5.任意给出的3个不同的自然数,有4种可能:奇数、奇数和偶数;奇数、偶数和偶数;奇数、奇数和奇数;偶数、偶数和偶数。而“奇数+奇数=偶数”,“偶数+偶数=偶数”,所以无论是哪种可能的情况下,都会出现这两种结果当中的一种,即任意给出3个不同的自然数,其中一定有2个数的和是偶数。6.如果只涂两行的话,至少有三列的涂法是相同的。5 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭