资料简介
19.2一次函数19.2.1正比例函数(第2课时)人教版数学八年级下册
①确定函数自变量的取值范围.②列表③画图象用描点法画函数图象有哪几个步骤?导入新知
2.能根据正比例函数的图象和表达式y=kx(k≠0)理解k>0和k<0时,函数的图象特征与增减性.1.会画正比例函数的图象.素养目标3.掌握正比例函数的性质,并能灵活运用解答有关问题.
画出下列正比例函数的图象:(1)y=2x,;(2)y=-1.5x,y=-4x.xy100-12-2…………24-2-4解:(1)函数y=2x中自变量x可为任意实数.①列表如下:探究新知知识点1正比例函数的图象
y=2x②描点;③连线.同样可以画出函数的图象.看图发现:这两个图象都是经过原点的.而且都经过第象限;一、三直线探究新知
解:(2)函数y=-1.5x,y=-4x的图象如下:y=-4xy=-1.5x看图发现:这两个函数图象都是经过原点和第象限的直线.二、四探究新知
y=kx(k是常数,k≠0)的图象是一条经过原点的直线y=kx(k≠0)经过的象限k>0第一、三象限k<0第二、四象限探究新知提示:函数y=kx的图象我们也称作直线y=kx
用你认为最简单的方法画出下列函数的图象:(1)y=-3x;(2)怎样画正比例函数的图象最简单?为什么?两点作图法提示:由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点(1,k),连线即可.巩固练习
Ox01y=-3x0-30y=-3x函数y=-3x,的图象如下:解:列表如下:巩固练习
(1)若函数图象经过第一、三象限,则k的取值范围是________.例已知正比例函数y=(k-3)x.k>3解析:因为函数图象经过第一、三象限,所以k-3>0,解得k>3.探究新知素养考点1利用正比例函数的定义求字母的值(2)若函数图象经过点(2,4),则k_____.解析:将坐标(2,4)带入函数解析式中,得4=(k-3)·2,解得k=5.=5
(1)若函数图象经过第二、四象限,则k的取值范围是_______.已知正比例函数y=(k+5)x.k<-5解析:因为函数图象经过第二、四象限,所以k+5<0,解得k<-5.(2)若函数图象经过点(3,-9),则k_____.解析:将坐标(3,-9)带入函数解析式中,得-9=(k+5)·3,解得k=-8.=-8巩固练习
在函数y=x,y=3x,和y=-4x中,随着x的增大,y的值分别如何变化?分析:对于函数y=x,当x=-1时,y=;当x=1时,y=;当x=2时,y=;不难发现y的值随x的增大而.-112增大分析:对于函数y=-4x,当x=-1时,y=;当x=1时,y=;当x=2时,y=;不难发现y的值随x的增大而.4-4-8减小知识点2正比例函数的性质探究新知数值分析
我们还可以借助函数图象分析此问题.观察图象可以发现:①直线y=x,y=3x向右逐渐,即y的值随x的增大而增大;②直线,y=-4x向右逐渐,即y的值随x的增大而减小.上升下降探究新知图像分析
在正比例函数y=kx中:当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.探究新知Oxyy=kx(k>0)Oxyy=kx(k<0)
例已知正比例函数y=mx的图象经过点(m,4),且y的值随着x值的增大而减小,求m的值.解:∵正比例函数y=mx的图象经过点(m,4),∴4=m·m,解得m=±2.又∵y的值随着x值的增大而减小,∴m<0,故m=-2探究新知素养考点1利用正比例函数的性质求字母的值
已知正比例函数y=kx的图象经过点(k,25),且y的值随着x值的增大而增大,求k的值.解:∵正比例函数y=kx的图象经过点(k,25),∴25=k·k,解得k=±5.又∵y的值随着x值的增大而增大,∴k>0,故k=5巩固练习
A如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为( )A.B.C.﹣2D.2xyOABC连接中考
1.在平面直角坐标系中,正比例函数y=kx(k<0)的图象的大致位置只可能是()xyOxyOxyOxyOABCDAA基础巩固题课堂检测
B2.正比例函数y=(m-1)x的图象经过一、三象限,A.m=1B.m>1C.m<1D.m≥13.正比例函数y=(3-k)x,如果随着x的增大y反而减小,则k的取值范围是______.k>3则m的取值范围是()课堂检测
(0,)与点(1,),y随x的增大而.(0,)与点(1,),y随x的增大而.4.函数y=-3x的图象在第象限内,经过点二、四0减小-305.函数的图象在第象限内,经过点一、三增大课堂检测
6.已知正比例函数y=(2m+4)x.(1)当m,函数图象经过第一、三象限;(2)当m,y随x的增大而减小;(3)当m,函数图象经过点(2,10).>-2<-2=0.5课堂检测
1.已知正比例函数y=2x的图象上有两点(3,y1),(5,y2),则y1y2.<2.已知正比例函数y=kx(k<0)的图象上有两点(-3,y1),(1,y2),则y1y2.>能力提升题课堂检测
如图分别是函数y=k1x,y=k2x,y=k3x,y=k4x的图象.(1)k1k2,k3k4(填“>”或“<”或“=”);(2)用不等号将k1,k2,k3,k4及0依次连接起来.<解:k1<k2<0<k3<k4<42-2-44xyOy=k4x-4-22y=k3xy=k2xy=k1x拓广探索题课堂检测
正比例函数的图象和性质图象:经过原点的直线.当k>0时,经过第一、三象限;当k<0时,经过第二、四象限.性质:当k>0时,y的值随x值的增大而增大;当k<0时,y的值随x值的增大而减小.课堂小结
课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。