资料简介
幂函数A级——基础过关练1.下列函数:①y=x3;②y=4x2;③y=x5+1;④y=(x-1)2;⑤y=x.其中幂函数的个数为( )A.1 B.2 C.3 D.4【答案】B 【解析】②中系数不是1,③中解析式为多项式,④中底数不是自变量本身,所以只有①⑤是幂函数.故选B.2.如图所示,曲线C1与C2分别是函数y=xm和y=xn在第一象限内的图象,则下列结论正确的是( )A.n<m<0B.m<n<0C.n>m>0D.m>n>0【答案】A 【解析】由图象可知两函数在第一象限内递减,故m<0,n<0.由曲线C1,C2的图象可知n<m.3.(2020年郑州月考)已知幂函数f(x)=2kxm的图象过点(,4),则k+m=( )A.4 B. C.5 D.【答案】B 【解析】因为幂函数f(x)=2kxm,所以2k=1,解得k=.又因为图象过点(,4),所以()m=4,m=4,则k+m=.故选B.4.函数y=x-的图象大致是( )5
ABCD【答案】D 【解析】由幂函数的性质知函数y=x-在第一象限为减函数,且它的定义域为{x|x>0}.5.(2021年沈阳期末)已知幂函数f(x)=xα,当x>1时,恒有f(x)<x,则α的取值范围是( )A.(0,1)B.(-∞,1)C.(0,+∞)D.(-∞,0)【答案】B 【解析】当x>1时,恒有f(x)<x,即当x>1时,函数f(x)=xα的图象在y=x的图象的下方,作出幂函数f(x)=xα在第一象限的图象.由图象可知α<1时满足题意.故选B.6.(2020年朔州高一期中)已知幂函数y=f(x)的图象过点,则f(3)=________.【答案】 【解析】设幂函数为f(x)=xα,因为过,所以f=,所以=⇒2-=⇒α=,所以f(3)=3=.7.已知幂函数f(x)=xα图象经过点P(2,),则α=________,函数y=f(x2)-2f(x)的最小值等于________.【答案】 -1 【解析】幂函数f(x)=xα图象经过点P(2,),则2α=,解得α=.所以f(x)=x,所以函数y=f(x2)-2f(x)=(x2)-2x=x-2=(-1)2-1.当x=1时,函数y的最小值为-1.8.(2020年武汉高一期中)已知幂函数f(x)=(2m-1)x-2n2+n+3(n∈Z5
)为偶函数,且满足f(3)<f(5),则m+n=________.【答案】2 【解析】因为幂函数f(x)=(2m-1)x-2n2+n+3(n∈Z)为偶函数,所以解得m=1,且n=1,3,5,….因为满足f(3)<f(5),即3-2n2+n+3<5-2n2+n+3,故-2n2+n+3为正偶数,所以n=1.则m+n=1+1=2.9.比较下列各组数的大小.(1)3-和3.2-;(2)4.1和3.8-.解:(1)函数y=x-在(0,+∞)上为减函数.又3<3.2,所以3->3.2-.(2)4.1>1=1,0<3.8-<1-=1,所以4.1>3.8-.B级——能力提升练10.(2020年武汉高一期中)若幂函数f(x)=(m2+m-5)xm2-2m-3的图象不经过原点,则m的值为( )A.2B.-3C.3D.-3或2【答案】A 【解析】由幂函数定义得m2+m-5=1,解得m=-3或m=2.当m=-3时,m2-2m-3=12,f(x)=x12,过原点,不符合题意,故m=-3舍去;当m=2时,m2-2m-3=-3,f(x)=x-3,显然不过原点,符合条件.故选A.11.已知幂函数f(x)=xα的图象过点,则函数g(x)=(x-2)f(x)在区间上的最小值是( )A.-1B.-2C.-3D.-45
【答案】C 【解析】由已知得2α=,解得α=-1,所以g(x)==1-在区间上单调递增,则g(x)min=g=-3.故选C.12.(多选)(2021年德州期末)已知实数a,b满足等式a=b,则下列式子可能成立的是( )A.0<b<a<1B.-1<a<b<0C.1<a<bD.a=b【答案】ACD 【解析】首先画出y1=x与y2=x的图象(如图),已知a=b=m,作直线y=m.若m=0或m=1,则a=b;若0<m<1,则0<b<a<1;若m>1,则1<a<b.从图象知,可能成立的是ACD.13.已知2.4α>2.5α,则α的取值范围是________.【答案】(-∞,0) 【解析】因为0<2.4<2.5,而2.4α>2.5α,所以y=xα在(0,+∞)上为减函数,故α<0.14.(2021年南昌模拟)已知幂函数f(x)=xα的部分对应值如下表:x1f(x)1则不等式f(|x|)≤3的解集是________.【答案】{x|-9≤x≤9} 【解析】由表中数据知=,∴α=,∴f(x)=x,∴|x|≤3,即|x|≤9,故-9≤x≤9.15.已知幂函数f(x)=(m2-5m+7)x-m-1(m∈R)为偶函数.(1)求f的值;(2)若f(2a+1)=f(a),求实数a的值.解:(1)由m2-5m+7=1,得m=2或m=3.5
当m=2时,f(x)=x-3是奇函数,所以不满足题意,所以m=2舍去;当m=3时,f(x)=x-4,满足题意,所以f(x)=x-4,所以f==16.(2)由f(x)=x-4为偶函数且f(2a+1)=f(a),得|2a+1|=|a|,即2a+1=a或2a+1=-a,解得a=-1或a=-.C级——探究创新练16.已知幂函数y=x3m-9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x的增大而减小,求满足(a+1)-<(3-2a)-时a的取值范围.解:因为函数在(0,+∞)上递减,所以3m-9<0,解得m<3.因为m∈N*,所以m=1,2.又函数图象关于y轴对称,所以3m-9为偶数,故m=1.所以(a+1)-<(3-2a)-.又因为y=x-在(-∞,0),(0,+∞)上均递减,所以a+1>3-2a>0或0>a+1>3-2a或a+1<0<3-2a,解得<a<或a<-1.故a的取值范围是.5
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。