资料简介
人教版七年级上册数学:4.2.1《直线、射线、线段》课时练习(含答案)4.2 直线、射线、线段第1课时 直线、射线、线段能力提升1.下列说法中错误的是( )A.过一点可以作无数条直线B.过已知三点可以画一条直线C.一条直线通过无数个点D.两点确定一条直线2.射线OA,射线OB表示同一条射线,下面正确的是( )3.图中共有 条线段. 4.看图填空:,(1)点C在直线AB ; (2)点O在直线BD ,点O是直线 与直线 的交点; (3)过点A的直线共有 条,它们是 . 5.如图所示,在线段AB上任取D,E,C三个点,则这个图中共有 条线段. 6.木工检验木条的边线是否是直的,常常用眼睛从木条的一端向另一端望去,如果看到两个端点及这条边线中的各点都重合于一点,那么这条边线就是直的,你可以同伙伴试一试这种方法,并说一说其中的道理.7.按下列语句画出图形.(1)直线l经过A,B,C三点,点C在点A与点B之间;(2)经过点O的三条直线a,b,c;(3)两条直线AB与CD相交于点P;(4)P是直线a外一点,经过点P有一条直线b与直线a相交于点Q.,★8.阅读下表:线段AB上的点数n(包括A,B两点)图例线段总条数N33=2+146=3+2+1510=4+3+2+1615=5+4+3+2+1解答下列问题:(1)根据表中规律猜测线段总数N与线段上的点数n(包括线段两个端点)有什么关系?(2)根据上述关系解决如下实际问题:有一辆客车往返于A,B两地,中途停靠三个站点,如果任意两站间的票价都不同,问:①有多少种不同的票价?②要准备多少种车票?创新应用★9.,如图,l1与l2是同一平面内的两条相交直线,它们有一个交点.如果在这个平面内再画第三条直线l3,那么这3条直线最多可有 个交点;如果在这个平面内再画第4条直线l4,那么这4条直线最多可有 个交点.由此,我们可以猜想:在同一平面内,n(n为大于1的整数)条直线最多可有 个交点.(用含n的式子表示) 参考答案能力提升1.B 过三点画直线,要看这三点在不在一条直线上,若不在,则无法画出.2.B 射线自端点向一方无限延伸,因为表示射线时字母有顺序性,即端点字母写在前面,所以点A、点B应在点O的同侧且三点在同一条直线上.3.104.(1)外 (2)上 AC BD (3)3 直线AD、直线AB、直线AC 这类题,必须认真观察图形,弄清各元素的位置关系,用精练、准确的语言表达.5.10 只要有一个端点不相同,就是不同的线段.6.解:经过两点有且只有一条直线.7.解:(1)(2)(3),(4)8.解:(1)N=1+2+3+…+(n-1)=.(2)①A,B两地之间有三个站点,说明在这条线段上有5个点,则共有=10条线段,即有10种票价;②由于从A到B和从B到A的车票不同,则要准备10×2=20种车票.创新应用9.3 6 通过作图发现:3条直线最多有交点1+2=3(个);4条直线最多有交点1+2+3=6(个);5条直线最多有交点1+2+3+4=10(个)……n条直线最多有交点1+2+3+…+(n-1)=(个).
查看更多