资料简介
人教版七年级上册数学同步练习:不等式与不等式组第九章 不等式与不等式组【知识梳理】 1.判断不等式是否成立:关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数。因此,在判断不等式成立与否或由不等式变形求某些字母的范围时,要认真观察不等式的形式与不等号方向。2.解一元一次不等式(组):解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质。一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。 3.求不等式(组)的特殊解:不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集,然后再找到相应的答案。注意应用数形结合思想。 4.列不等式(组)解应用题:注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题。 考查学生对知识的掌握,灵活运用知识的解题的能力,同时考查学生数学建模的能力。 【能力训练】 一、填空题: 1.用不等式表示:① a大于0_____________; ②是负数____________; ③ 5与x的和比x的3倍小______________________。 2.不等式的解集是__________________。 3.用不等号填空:若。 4.当x_________时,代数代的值是正数。, 5.不等式组的解集是__________________。 6.不等式的正整数解是_______________________。 7.的最小值是a,的最大值是b,则 8.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则____________
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。