资料简介
24.3正多边形和圆第2课时1.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A、B、C、D、E、F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是( )A.rB.(1+)rC.(1+)rD.r2.在图中,用尺规作图画出圆O的内接正三角形.3.利用量角器画一个边长为2cm的正六边形.4.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()\nA.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a45.画一个正十二边形.6.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.7.如图,正六边形ABCDEF的边长为,点P为六边形内任一点.则点P到各边距离之和是多少?8.如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.(1)求图①中∠MON=_______;图②中∠MON=_______;图③中∠MON=_______;(2)试探究∠MON的度数与正n边形的边数n的关系.\n参考答案:1.D2.作法:⑴作出圆的任意一条半径,⑵作半径的垂直平分线,交圆于点A、B,⑶分别以A、B为圆心,线段AB的长为半径作弧,两户交于点C,连接AC、BC.则△ABC即为所求.3.作法:如图,以2cm为半径作一个⊙O,用量角器画一个等于的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得出正六边形.4.B5.作法:如图,分别以⊙O的四等分点A,B,E,F为圆心,以⊙O的半径长为半径,画8条弧与⊙O相交,就可以把⊙O分成12等份,依次连接各等分点,即得到正十二边形.\n
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。