资料简介
22.3实际问题与二次函数(第2课时)1.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为______件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.2.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30)出售,可卖出(300-20x)件,使利润最大,则每件售价应定为元.3.进价为80元的某件定价100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y(件)与衬衣售价x(元)之间的函数关系式为.每月利润w(元)与衬衣售价x(元)之间的函数关系式为.(以上关系式只列式不化简).4.一工艺师生产的某种产品按质量分为9个档次.第1档次(最低档次)的产品一天能生产80件,每件可获利润12元.产品每提高一个档次,每件产品的利润增加2元,但一天产量减少4件.如果只从生产利润这一角度考虑,他生产哪个档次的产品,可获得最大利润?\n5.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax²+bx-75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?\n参考答案:1.解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250.∴每件销售价为55元时,获得最大利润;最大利润为2250元.2.253.y=2000-5(x-100);w=[2000-5(x-100)](x-80)4.解:设生产x档次的产品时,每天所获得的利润为w元,则w=[12+2(x-1)][80-4(x-1)]=(10+2x)(84-4x)=-8x2+128x+840=-8(x-8)2+1352.当x=8时,w有最大值,且w最大=1352.答:该工艺师生产第8档次产品,可使利润最大,最大利润为1352元.5.解:(1)由图可以看出:二次函数y=ax+bx-75过点(5,0),(7,16),将两点坐标代入解析式即可求得:(1)y=-x2+20x-75,即y=-(x-10)2+25.∵-1<0,对称轴x=10,∴当x=10时,y值最大,最大值为25.即销售单价定为10元时,销售利润最大,为25元.(2)显然,当y=16时,x=7和13.因为函数y=-x+20x-75图象的对称轴为x=10,因此,点(7,16)关于对称轴的对称点为(13,16),故销售单价在7≤x≤13时,利润不低于16元.
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。