资料简介
22.1二次函数的图象和性质22.1.4二次函数y=ax2+bx+c的图象和性质(第2课时)1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5),求该函数的关系式.2.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(-2,-2),且过点B(0,2),则y与x的函数关系式为()A.y=x2+2B.y=(x-2)2+2C.y=(x-2)2-2D.y=(x+2)2-23.已知二次函数的图象经过点(4,-3),并且当x=3时有最大值4,则其解析式为.4.如图所示,已知抛物线的对称轴是直线x=3,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(8,0)、(0,4),求这个抛物线的解析式.3/3\n5.已知抛物线顶点(1,16),且抛物线与x轴的两交点间的距离为8,求其解析式.3/3\n参考答案:1.解:设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1.∴该函数的解析式为:y=﹣(x+1)2+4即y=﹣x2﹣2x+3.2.D3.y=-7(x-3)2+44.解:由抛物线过A(8,0)及对称轴为x=3,知抛物线一定过点(-2,0).设这个抛物线的解析式为y=a(x+2)(x-8),∵抛物线过点(0,4),∴4=a(0+2)(0-8),∴这个抛物线的解析式为5.解:由题意可知抛物线与x轴交点坐标为(5,0),(-3,0),设解析式为y=a(x-5)(x+3),∵抛物线过点(1,16),∴16=a(1-5)(1+3),解得a=-1.∴抛物线的解析式为y=-(x-5)(x+3)=-x2+2x+15.3/3
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。