资料简介
第十四章整式的乘法与因式分解
14.1.4整式的乘法第3课时1.下列说法正确的是()
A.(π–3.14)0没有意义
B.任何数的0次幂都等于1
C.(8×106)÷(2×109)=4×103
D.若(x+4)0=1,则x≠–42.下列算式中,不正确的是()
A.(–12a5b)÷(–3ab)=4a4
B.9xmyn–1÷3xm–2yn–3=3x2y2
C.4a2b3÷2ab=2ab2
D.x(x–y)2÷(y–x)=x(x–y)3.已知28a3bm÷28anb2=b2,那么m,n的取值为( )
A.m=4,n=3B.m=4,n=1
C.m=1,n=3D.m=2,n=34.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.5.已知一多项式与单项式–7x5y4的积为21x5y7–28x6y5,则这个多项式是______.
\n6.计算:(1)6a3÷2a2;(2)24a2b3÷3ab;(3)–21a2b3c÷3ab;(4)(14m3–7m2+14m)÷7m.7.先化简,再求值:(x+y)(x–y)–(4x3y–8xy3)÷2xy,其中x=1,y=–3.
8.(1)若32•92x+1÷27x+1=81,求x的值;(2)已知5x=36,5y=2,求5x–2y的值;
(3)已知2x–5y–4=0,求4x÷32y的值.
\n参考答案:1.D2.D3.A4.a+25.–3y3+4xy6.解:(1)6a3÷2a2
=(6÷2)(a3÷a2)
=3a.
(2)24a2b3÷3ab
=(24÷3)a2–1b3–1
=8ab2.
(3)–21a2b3c÷3ab
=(–21÷3)a2–1b3–1c
=–7ab2c;
(4)(14m3–7m2+14m)÷7m
=14m3÷7m-7m2÷7m+14m÷7m
=2m2–m+2.
7.解:原式=x2–y2–2x2+4y2
=–x2+3y2.
当x=1,y=–3时,原式=–12+3×(–3)2=–1+27=26.\n8.解:(1)32•34x+2÷33x+3=81,即3x+1=34,解得x=3;
(2)52y=(5y)2=4,5x–2y=5x÷52y=36÷4=9.
(3)∵2x–5y–4=0,移项,得2x–5y=4.
4x÷32y=22x÷25y=22x–5y=24=16.
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。