资料简介
小结与复习第一章直角三角形的边角关系要点梳理考点讲练课堂小结课后作业九年级数学下(BS)教学课件
要点梳理一、锐角三角函数1.如图所示,在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.(2)∠A的余弦:cosA==;(3)∠A的正切:tanA==.
2.梯子的倾斜程度与tanA、sinA和cosA的关系:tanA的值越大,梯子越陡;sinA的值越大,梯子越陡;cosA的值越小,梯子越陡.3.锐角三角函数的增减性:当角度在0°~90°之间变化时,正弦值和正切值随着角度的增大(或减小)而_______;余弦值随着角度的增大(或减小)而_______.增大(或减小)减小(或增大)
30°,45°,60°角的三角函数值锐角α三角函数30°45°60°sinαcosαtanα二、特殊角的三角函数
合作探究1.解直角三角形的依据(1)在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.三边关系:;三角关系:;边角关系:sinA=cosB=,cosA=sinB=,tanA=,tanB=.a2+b2=c2∠A=90°-∠B三、解直角三角形
(2)直角三角形可解的条件和解法条件:解直角三角形时知道其中的2个元素(至少有一个是边),就可以求出其余的3个未知元素.解法:①一边一锐角,先由两锐角互余关系求出另一锐角;知斜边,再用正弦(或余弦)求另两边;知直角边用正切求另一直角边,再用正弦或勾股定理求斜边;②知两边:先用勾股定理求另一边,再用边角关系求锐角;③斜三角形问题可通过添加适当的辅助线转化为解直角三角形问题.
1.利用计算器求三角函数值.第二步:输入角度值,屏幕显示结果.(有的计算器是先输入角度再按函数名称键)第一步:按计算器、、键,sintancos四、锐角三角函数的计算
2.利用计算器求锐角的度数.还可以利用键,进一步得到角的度数.第二步:然后输入函数值屏幕显示答案(按实际需要进行精确)°'″第一步:按计算器、、键,sincostanSHIFT
1.仰角和俯角铅直线水平线视线视线仰角俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.五、三角函数的应用
以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于900的角,叫做方向角.如图所示:30°45°BOA东西北南2.方向角45°45°西南O东北东西北南西北东南
αlhh:l(1)坡角坡面与水平面的夹角叫做坡角,记作α.(2)坡度(或坡比)坡度通常写成1∶m的形式,如1∶6.如图所示,坡面的铅垂高度(h)和水平长度(l)的比叫做坡面的坡度(或坡比),即—hl(3)坡度与坡角的关系坡度等于坡角的正切值坡面水平面3.坡角
利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.
ACMN(1)在测点A安置测倾器,测得M的仰角∠MCE=α;E(2)量出测点A到物体底部N的水平距离AN=l;(3)量出测倾器的高度AC=a,可求出MN的高度.MN=ME+EN=l·tanα+aα1.测量底部可以到达的物体的高度步骤:六、利用三角函数测高
2.测量东方明珠的高度的步骤是怎么样的呢?(1)在测点A处安置测倾器,测得此时M的仰角∠MCE=α;ACBDMNEα(2)在测点A与物体之间的B处安置测倾器,测得此时M的仰角∠MDE=β;β(3)量出测倾器的高度AC=BD=a,以及测点A,B之间的距离AB=b.根据测量数据,可求出物体MN的高度.
考点一求三角函数的值考点讲练例1在△ABC中,∠C=90°,sinA=,则tanB=( )A. B. C. D.【解析】根据sinA=,可设三角形的两边长分别为4k,5k,则第三边长为3k,所以tanB=B
针对训练1.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正弦值是________.
2.用计算器求下列各式的值:(1)cos63°17′≈______;(2)tan27.35°≈______;(3)sin39°57′6″≈______.0.450.520.643.已知sinα=0.2,cosβ=0.8,则α+β=__________(精确到1′).48°24′
考点二特殊角的三角函数值例2【解析】本题考查数的0次幂、分母有理化和特殊角的三角函数值.解:原式=
(1)tan30°+cos45°+tan60°(2)tan30°·tan60°+cos230°4.计算:针对训练
考点三解直角三角形例3.如图,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,cos∠ADC=,求:(1)DC的长;(2)sinB的值.【分析】题中给出了两个直角三角形,DC和sinB可分别在Rt△ACD和ABC中求得,由AD=BC,图中CD=BC-BD,由此可列方程求出CD.ABCD
解:(1)设CD=x,在Rt△ACD中,cos∠ADC=,又BC-CD=BD,解得x=6,∴CD=6.ABCD
(2)BC=BD+CD=4+6=10=AD在Rt△ACD中在Rt△ABC中ABCD
5.如图,在Rt△ABC中,∠C=90°,AC=.点D为BC边上一点,且BD=2AD,∠ADC=60°.求△ABC的周长(结果保留根号).针对训练
解:在Rt△ADC中,∴BD=2AD=4.∴BC=BD+DC=5.在Rt△ABC中,∴△ABC的周长=AB+BC+AC
考点四三角函数的应用例4如图,在一次数学课外实践活动中,要求测教学楼AB的高度.小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达EF,又测得教学楼顶端A的仰角为60°.求这幢教学楼AB的高度.【分析】设CF与AB交于点G,在Rt△AFG中,用AG表示出FG,在Rt△ACG中,用AG表示出CG,然后根据CG-FG=40,可求AG.G
解:设CF与AB交于点G,在Rt△AFG中,tan∠AFG=,∴FG=在Rt△ACG中,tan∠ACG=,又CG-FG=40,∴AG=,∴AB=答:这幢教学楼AB的高度为∴G
6.如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离(即CE的长)为8米,测得旗杆顶的仰角∠ECA为30°,旗杆底部的俯角∠ECB为45°,则旗杆AB的高度是多少米?CABDE解:如图在Rt△ACE和Rt△BCE中∠ACE=30°,EC=8米∴tan∠ACE=,tan∠ECB=即:AE=8tan30°=(米)EB=8tan45°=8(米)∴AE+EB=(8+)米针对训练
锐角三角函数特殊角的三角函数解直角三角形简单实际问题cabABC课堂小结
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。