资料简介
第二章二次函数导入新课讲授新课当堂练习课堂小结第2课时商品利润最大问题2.4二次函数的应用九年级数学下(BS)教学课件
学习目标1.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点)2.弄清商品销售问题中的数量关系及确定自变量的取值范围.(难点)
导入新课情境引入短片中,卖家使出浑身解数来赚钱.商品买卖过程中,作为商家利润最大化是永恒的追求.如果你是商家,如何定价才能获得最大利润呢?
利润问题中的数量关系一讲授新课某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是元,销售利润元.探究交流180006000数量关系(1)销售额=售价×销售量;(2)利润=销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.
例1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售2030020+x300-10xy=(20+x)(300-10x)建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.如何定价利润最大二6000
②自变量x的取值范围如何确定?营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x≥0,且x≥0,因此自变量的取值范围是0≤x≤30.③涨价多少元时,利润最大,最大利润是多少?y=-10x2+100x+6000,当时,y=-10×52+100×5+6000=6250.即涨价5元时,最大利润是6250元.
降价销售①每件降价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售降价销售2030020-x300+18xy=(20-x)(300+18x)建立函数关系式:y=(20-x)(300+18x),即:y=-18x2+60x+6000.例1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?6000
综合可知,应定价58元时,才能使利润最大。②自变量x的取值范围如何确定?营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x≥0,且x≥0,因此自变量的取值范围是0≤x≤20.③降价多少元时,利润最大,是多少?当时,即降价元时,最大利润是6050元.即:y=-18x2+60x+6000,由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?
知识要点求解最大利润问题的一般步骤(1)建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.
y=(160+10x)(120-6x)例2某旅馆有客房120间,每间房的日租金为160元,每天都客满.经市场调查,如果一间客房日租金每增加10元,则客房每天少出租6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?最高总收入是多少?解:设每间客房的日租金提高10x元,则每天客房出租数会减少6x间,设客房日租金为y万元,则当x=2时,y有最大值,且y最大=19440.答:每间客房的日租金提高到180元时,客房日租金的总收入最高,最大收入为19440.=-60(x-2)2+19440.∵x≥0,且120-6x>0,∴0≤x<20.这时每间客房的日租金为160+10×2=180(元).
1.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30)出售,可卖出(600-20x)件,为使利润最大,则每件售价应定为元.25当堂练习
2.进价为80元的某衬衣定价为100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y(件)与衬衣售价x(元)之间的函数关系式为.每月利润w(元)与衬衣售价x(元)之间的函数关系式为.(以上关系式只列式不化简).y=2000-5(x-100)w=[2000-5(x-100)](x-80)
3.某种商品的成本是120元,试销阶段每件商品的售价x(元)与产品的销售量y(件)满足当x=130时,y=70,当x=150时,y=50,且y是x的一次函数,为了获得最大利润S(元),每件产品的销售价应定为( )A.160元B.180元C.140元D.200元A
4.生产季节性产品的企业,当它的产品无利润时就会及时停产,现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是( )A.1月,2月B.1月,2月,3月C.3月,12月D.1月,2月,3月,12月D
5.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?解:(1)由题中条件可求y=-x2+20x-75∵-1<0,对称轴x=10,∴当x=10时,y值最大,最大值为25.即销售单价定为10元时,销售利润最大,为25元;7xy516O
(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?(2)由对称性知y=16时,x=7和13.故销售单价在7≤x≤13时,利润不低于16元.
课堂小结最大利润问题建立函数关系式总利润=单件利润×销售量或总销量=总售价-总成本.确定自变量的取值范围涨价:要保证销售量≥0;降价:要保证单件利润≥0.确定最大利润利用配方法或公式求最大值或利用函数简图和性质求出.
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。