资料简介
第二章整式的加减
2.1整式第2课时一、教学目标【知识与技能】1.理解单项式及单项式系数、次数的概念。2.会准确迅速地确定一个单项式的系数和次数。【过程与方法】初步培养学生观察、分析、抽象、概括等思维能力和应用意识.【情感态度与价值观】通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.二、课型新授课三、课时第2课时,共3课时。四、教学重难点【教学重点】掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.【教学难点】单项式概念的建立.\n五、课前准备教师:课件、直尺等.学生:三角尺、练习本、铅笔、圆珠笔或钢笔.六、教学过程(一)导入新课思考解答下面问题:(出示课件2)用式子表示下列问题:1.铅笔的单价是x,圆珠笔的单价是铅笔的单价的2.5倍,圆珠笔的单价是;2.一辆汽车的速度是v千米/时,它t小时行驶的路程为千米.学生回答:1.2.5x;2.vt教师问:你填写的式子有何特点呢?(二)探索新知1.师生互动,探究单项式的有关概念教师问1:用含有字母的式子填空,并观察特点:(出示课件4)(1)若边长为m的正方体的周长为________,面积为;(2)铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,圆珠笔的单价是元;(3)一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_______千米;(4)半径为rcm的圆的周长是cm,面积为cm2.学生回答:(1)4m;m2(2)2.5x;(3)vt;(4)2πr;πr2教师问2:观察所列代数式包含哪些运算?\n学生讨论后回答:所列代数式包含乘法运算,都含有字母的乘法运算.教师问3:观察上面各式中运算有什么共同特点?学生讨论后回答:上面各式中,数字与字母之间,字母与字母之间都是乘法运算,它们都是数字与字母的积,例如:4m表示4×m,m2表示m×m,2.5x表示2.5×x,vt表示v×t,2πr表示2π×r,πr2表示π×r2.注意:p是圆周率的代号,不是字母.教师问4:具有这种关系的式子叫做单项式,你能给单项式下个定义吗?学生回答:像上面这样,只含有数与字母的积的式子叫做单项式.教师问5:单独的一个数或一个字母是不是单项式呢?师生共同解答如下:单独的一个数或一个字母也是单项式.如:-2,a,,都是单项式,而,1+x都不是单项.总结点拨:(出示课件6)这些式子都是数或字母的积,像这样的式子叫做单项式,单独的一个数或一个字母也是单项式.例如:像2017,x,等是单项式.
教师问6:单项式中可以含有加减运算吗?学生回答:不可以.教师问6:单项式的分母中可以含有字母吗?学生回答:不可以.总结点拨:(出示课件8)判断单项式的方法
1.单独一个数或一个字母也是单项式.\n
2.不含加减运算,单项式只含有乘积运算.
3.单项式数字因数与字母可能一个或多个.
4.可以含有除以数的运算,不能含有除以字母的运算.
教师问7:单项式中的数字因数叫做这个单项式的系数,请指出下列各单项式的系数:6a2,a3,-n,-.学生回答:6a2的系数是6,a3的系数是1,-n的系数是-1,-的系数是-.教师问8:当一个单项式的系数是1或-1时通常如何处理呢?学生讨论后回答:当一个单项式的系数是1或-1时通常省略不写.教师问9:一个单项式中,所有字母的指数的和叫做这个单项式的次数.请指出下列各单项式的次数及是几次单项式:2.5x,vt,-ab2c.学生回答:2.5x中字母x的指数是1,2.5x是一次单项式;vt中字母v与t的指数和是2,vt是二次单项式,-ab2c中字母a、b、c的指数和是4,-ab2c是4次单项式.总结点拨:(出示课件9)单项式中的数字因数称为这个单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数.
例1:用单项式填空,并指出它们的系数和次数.(出示课件10-11)\n(1)每包书有12册,n包书有_____册;
(2)底边长为a,高为h的三角形的面积是_____;
(3)一个长方体的长和宽都是a,高为h,它的体积是_____;
(4)一台电视机原价为a元,现按原价的九折出售,这台电视机现在的售价为______;
(5)一个长方形的长为0.9,宽为a,面积是_____.
师生共同解答如下:解:(1)12n,系数是12,次数是1;(2),系数是,次数是2;(3)a2h,系数是1,次数是3;(4)0.9a,系数是0.9,次数是1;(5)0.9a,系数是0.9,次数是1;提示:同一个式子可以表示不同的含义.总结点拨:(出示课件13)确定单项式的系数及次数时,应注意:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写;
③省略1的字母指数别漏掉;
④单项式次数只与字母指数有关,单独一个非0数字的次数是0.教师问10:你能写出一个只含有x、y,而且系数是-3,次数是4的单项式吗?(出示课件14)提示:x、y的指数之和为4即可.学生回答:-3xy3、-3x2y2、-3x3y
例2:若(m-2)x2yn是关于x,y\n的一个四次单项式,m,n应满足的条件是什么? (出示课件15)师生共同解答如下:分析:系数为m-2,m当作已知常数看待.
解:由题意知m,n要满足2+n=4,m-2≠0,所以m≠2,n=2.(三)课堂练习(出示课件18-21)1.-xy2z3的系数及次数分别是()
A.系数是0,次数是5B.系数是1,次数是6;
C.系数是-1,次数是5D.系数是-1,次数是6;2.单项式-4r2的系数及次数分别为()
A.-4,2B.-4,3
C.-4π,2 D.-4π,3
3.如果-a2b2n-1是五次单项式,则n的值为( )
A.1 B.2 C.3 D.4
4.填空:
(1)全校学生总数是x,其中女生人数占总数的48%,则女生人数是________,男生人数是________;
(2)一辆长途汽车从杨柳村出发,3h后到达距出发地skm的溪河镇,这辆长途汽车的平均速度是________km/h;
(3)产量由mkg增长10%,就到达_________kg.
5.单项式-的系数为__________,次数为_______.
\n6.若(m+1)xny是关于x,y的一个四次单项式,求m,n应满足的条件是什么?参考答案:1.D2.C3.B4.(1)0.48x;x-0.48x;(2);(3)(m+0.1m)5.-,3.6.解:因为m+1≠0,n+1=4,
所以m≠-1,n=3
(四)课堂小结今天我们学了哪些内容:1.单项式及单项式的系数、次数。2.根据教学过程反馈的信息对出现的问题有针对性地进行小结。3.通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力.(五)课前预习预习下节课(2.1)58页的相关内容。知道整式、多项式、多项式的次数、多项式的项、常数项的定义七、课后作业1、教材57页练习1,2\n2、下面各题的判断是否正确?①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是.八、板书设计:1.单独的一个数或一个字母也是单项式;
2.当一个单项式的系数是1或-1时,通常省略不写,如x2,-a2b等;
3.圆周率π是常数,把它当作系数;
4.如果单项式指数为0,它就是零次单项式;
5.单项式次数只与字母指数有关.
九、教学反思:本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。\n
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。