返回

高中数学人教A版选修4-5第5.2.1含有绝对值的不等式的解法教学设计

首页 > 高中 > 数学 > 高中数学人教A版选修4-5第5.2.1含有绝对值的不等式的解法教学设计

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

5.2.1含有绝对值的不等式的解法目的要求:重点难点:教学过程:一、引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解。在此基础上,本节讨论含有绝对值的不等式。关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。下面分别就这两类问题展开探讨。1、解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式。主要的依据是绝对值的意义.请同学们回忆一下绝对值的意义。在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。即。2、含有绝对值的不等式有两种基本的类型。第一种类型。设a为正数。根据绝对值的意义,不等式\n的解集是,它的几何意义就是数轴上到原点的距离小于a的点的集合是开区间(-a,a),如图所示。图1-1如果给定的不等式符合上述形式,就可以直接利用它的结果来解。第二种类型。设a为正数。根据绝对值的意义,不等式的解集是{或}它的几何意义就是数轴上到原点的距离大于a的点的集合是两个开区间的并集。如图1-2所示。–\n图1-2同样,如果给定的不等式符合这种类型,就可以直接利用它的结果来解。二、典型例题:例1、解不等式。例2、解不等式。方法1:分域讨论★方法2:依题意,或,(为什么可以这么解?)例3、解不等式。例4、解不等式。\n解本题可以按照例3的方法解,但更简单的解法是利用几何意义。原不等式即数轴上的点x到1,2的距离的和大于等于5。因为1,2的距离为1,所以x在2的右边,与2的距离大于等于2(=(5-1);或者x在1的左边,与1的距离大于等于2。这就是说,或例5、不等式>,对一切实数都成立,求实数的取值范围。三、小结:四、练习:解不等式1、2、3、.4、.5、6、.7、8、9、10、五、作业:\n 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭