返回

高中数学人教A版选修2-3第1章1.3.2“杨辉三角”与二项式系数的性质2教学设计

资料简介

1.3.2“杨辉三角”与二项式系数的性质2例4.在(x2+3x+2)5的展开式中,求x的系数解:∵∴在(x+1)5展开式中,常数项为1,含x的项为,在(2+x)5展开式中,常数项为25=32,含x的项为∴展开式中含x的项为,∴此展开式中x的系数为240例5.已知的展开式中,第五项与第三项的二项式系数之比为14;3,求展开式的常数项解:依题意∴3n(n-1)(n-2)(n-3)/4!=4n(n-1)/2!n=10设第r+1项为常数项,又令,此所求常数项为180例6.设,当时,求的值解:令得:\n,∴,点评:对于,令即可得各项系数的和的值;令即,可得奇数项系数和与偶数项和的关系例7.求证:.证(法一)倒序相加:设①又∵   ②∵,∴,由①+②得:,∴,即.(法二):左边各组合数的通项为,∴.例8.在的展开式中,求:①二项式系数的和; ②各项系数的和; \n③奇数项的二项式系数和与偶数项的二项式系数和; ④奇数项系数和与偶数项系数和; ⑤的奇次项系数和与的偶次项系数和.分析:因为二项式系数特指组合数,故在①,③中只需求组合数的和,而与二项式中的系数无关.解:设(*),各项系数和即为,奇数项系数和为,偶数项系数和为,的奇次项系数和为,的偶次项系数和.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.①二项式系数和为.②令,各项系数和为.③奇数项的二项式系数和为,偶数项的二项式系数和为.④设,令,得到…(1),令,(或,)得…(2)(1)+(2)得,\n∴奇数项的系数和为;(1)-(2)得,∴偶数项的系数和为.⑤的奇次项系数和为;的偶次项系数和为.点评:要把“二项式系数的和”与“各项系数和”,“奇(偶)数项系数和与奇(偶)次项系数和”严格地区别开来,“赋值法”是求系数和的常规方法之一. 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭