资料简介
1.3.2函数的极值与导数教学目标:1.理解极大值、极小值的概念;2.能够运用判别极大值、极小值的方法来求函数的极值;3.掌握求可导函数的极值的步骤;教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.教学过程:一.创设情景观察图3.3-8,我们发现,时,高台跳水运动员距水面高度最大.那么,函数在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?放大附近函数的图像,如图3.3-9.可以看出;在,当时,函数单调递增,;当时,函数单调递减,;这就说明,在附近,函数值先增(,)后减(,).这样,当在的附近从小到大经过时,先正后负,且连续变化,于是有.\n对于一般的函数,是否也有这样的性质呢?附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的.从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号二.新课讲授1.问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.(2)从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.2.函数的单调性与导数的关系\n观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图3.3-3,导数表示函数在点处的切线的斜率.在处,,切线是“左下右上”式的,这时,函数在附近单调递增;在处,,切线是“左上右下”式的,这时,函数在附近单调递减.结论:函数的单调性与导数的关系在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.说明:(1)特别的,如果,那么函数在这个区间内是常函数.3.求解函数单调区间的步骤:(1)确定函数的定义域;(2)求导数;(3)解不等式,解集在定义域内的部分为增区间;(4)解不等式,解集在定义域内的部分为减区间.三.典例分析例1.已知导函数的下列信息:当时,;\n当,或时,;当,或时,试画出函数图像的大致形状.解:当时,,可知在此区间内单调递增;当,或时,;可知在此区间内单调递减;当,或时,,这两点比较特殊,我们把它称为“临界点”.综上,函数图像的大致形状如图3.3-4所示.例2.判断下列函数的单调性,并求出单调区间.(1);(2)(3);(4)解:(1)因为,所以,因此,在R上单调递增,如图3.3-5(1)所示.(2)因为,所以,当,即时,函数单调递增;当,即时,函数单调递减;函数的图像如图3.3-5(2)所示.\n(1)因为,所以,因此,函数在单调递减,如图3.3-5(3)所示.(2)因为,所以.当,即时,函数;当,即时,函数;函数的图像如图3.3-5(4)所示.注:(3)、(4)生练例3如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像.分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.解:\n思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.如图3.3-7所示,函数在或内的图像“陡峭”,在或内的图像“平缓”.例3求证:函数在区间内是减函数.证明:因为当即时,,所以函数在区间内是减函数.说明:证明可导函数在内的单调性步骤:(1)求导函数;(2)判断在内的符号;(3)做出结论:为增函数,为减函数.例4已知函数在区间上是增函数,求实数的取值范围.解:,因为在区间上是增函数,所以\n对恒成立,即对恒成立,解之得:所以实数的取值范围为.说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解.四.课堂练习1.求下列函数的单调区间1.f(x)=2x3-6x2+72.f(x)=+2x3.f(x)=sinx,x4.y=xlnx2.课本P101练习五.回顾总结(1)函数的单调性与导数的关系(2)求解函数单调区间(3)证明可导函数在内的单调性六.布置作业\n
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。