资料简介
1.1.2导数的概念教学目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数教学重点:瞬时速度、瞬时变化率的概念、导数的概念;教学难点:导数的概念.教学过程:一.创设情景(一)平均变化率(二)探究:计算运动员在这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)=-4.9t2+6.5t+10的图像,结合图形可知,,\nhto所以,虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.二.新课讲授1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度。运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,时的瞬时速度是多少?考察附近的情况:思考:当趋近于0时,平均速度有什么样的变化趋势?结论:当趋近于0时,即无论\n从小于2的一边,还是从大于2的一边趋近于2时,平均速度都趋近于一个确定的值.从物理的角度看,时间间隔无限变小时,平均速度就无限趋近于史的瞬时速度,因此,运动员在时的瞬时速度是为了表述方便,我们用表示“当,趋近于0时,平均速度趋近于定值”小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。2导数的概念从函数y=f(x)在x=x0处的瞬时变化率是:我们称它为函数在出的导数,记作或,即说明:(1)导数即为函数y=f(x)在x=x0处的瞬时变化率(2),当时,,所以三.典例分析\n例1.(1)求函数y=3x2在x=1处的导数.分析:先求Δf=Δy=f(1+Δx)-f(1)=6Δx+(Δx)2 再求再求解:法一(略)法二:(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数.解:例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第时,原油的温度(单位:)为,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义.解:在第时和第时,原油温度的瞬时变化率就是和根据导数定义,所以\n同理可得:在第时和第时,原油温度的瞬时变化率分别为和5,说明在附近,原油温度大约以的速率下降,在第附近,原油温度大约以的速率上升.注:一般地,反映了原油温度在时刻附近的变化情况.四.课堂练习1.质点运动规律为,求质点在的瞬时速度为.2.求曲线y=f(x)=x3在时的导数.3.例2中,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义.五.回顾总结1.瞬时速度、瞬时变化率的概念2.导数的概念六.布置作业
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。