资料简介
2.2.1直接证明--综合法与分析法教学目标:知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。教学重点:了解分析法和综合法的思考过程、特点教学难点:分析法和综合法的思考过程、特点教具准备:与教材内容相关的资料。教学设想:分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。教学过程:学生探究过程:证明的方法\n(1)分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。(2)、例1.设a、b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2.证明:(用分析法思路书写)要证a3+b3>a2b+ab2成立,只需证(a+b)(a2-ab+b2)>ab(a+b)成立,即需证a2-ab+b2>ab成立。(∵a+b>0)只需证a2-2ab+b2>0成立,即需证(a-b)2>0成立。而由已知条件可知,a≠b,有a-b≠0,所以(a-b)2>0显然成立,由此命题得证。(以下用综合法思路书写)∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2>0亦即a2-ab+b2>ab\n由题设条件知,a+b>0,∴(a+b)(a2-ab+b2)>(a+b)ab即a3+b3>a2b+ab2,由此命题得证例2、若实数,求证:证明:采用差值比较法:====∴∴例3、已知求证本题可以尝试使用差值比较和商值比较两种方法进行。证明:1)差值比较法:注意到要证的不等式关于对称,不妨设,从而原不等式得证。2)商值比较法:设\n故原不等式得证。注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。讨论:若题设中去掉这一限制条件,要求证的结论如何变换?巩固练习:第81页练习1,2,3,4课后作业:第84页1,2,3教学反思:本节课学习了分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。