资料简介
2.7弧长及扇形的面积\n【导入新课】\n问题1如图,在运动会的4×100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?问题2怎样来计算弯道的“展直长度”?因为这些弯道的“展直长度”是一样的.甲乙12\n问题1半径为R的圆,周长是多少?OR问题2下图中各圆心角所对的弧长分别是圆周长的几分之几?OR180°OR90°OR45°ORn°【讲授新课】\n(1)圆心角是180°,占整个周角的,因此它所对的弧长是圆周长的__________.(2)圆心角是90°,占整个周角的,因此它所对的弧长是圆周长的__________.(3)圆心角是45°,占整个周角的,因此它所对的弧长是圆周长的__________.(4)圆心角是n°,占整个周角的,因此它所对的弧长是圆周长的__________.\n用弧长公式,进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.注意算一算已知弧所对的圆心角为60°,半径是4,则弧长为____.弧长公式知识要点\n例1制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)解:由弧长公式,可得弧AB的长因此所要求的展直长度l=2×700+1570=2970(mm).答:管道的展直长度为2970mm.700mm700mmR=900mm(100°ACBDO【例题讲解】\n由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形.半径半径OBA圆心角弧OBA扇形与扇形面积相关的计算\n下列图形是扇形吗?判一判\n想一想问题1半径为R的圆,面积是多少?OR问题2下图中各扇形面积分别是圆面积的几分之几?OR180°OR90°OR45°ORn°\n(1)圆心角是180°,占整个周角的,因此圆心角是180°的扇形面积是圆面积的__________.(2)圆心角是90°,占整个周角的,因此圆心角是90°的扇形面积是圆面积的__________.(3)圆心角是45°,占整个周角的,因此圆心角是45°的扇形面积是圆面积的__________.(4)圆心角是n°,占整个周角的,因此圆心角是n°的扇形面积是圆面积的__________.\n扇形面积公式若设☉O半径为R,圆心角为n°的扇形的面积①公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;②公式要理解记忆(即按照上面推导过程记忆).注意ABO知识要点\n问题:扇形的弧长公式与面积公式有联系吗?想一想扇形的面积公式与什么公式类似?ABOO类比学习\n1.扇形的弧长和面积都由决定.扇形的半径与扇形的圆心角2.已知半径为2cm的扇形,其弧长为,则这个扇形的面积S扇=.3.已知扇形的圆心角为120°,半径为2,则这个扇形的面积S扇=.试一试\n例2如图,圆心角为60°的扇形的半径为10cm.求这个扇形的面积和周长.(精确到0.01cm2和0.01cm)OR60°解:∵n=60,r=10cm,∴扇形的面积为扇形的周长为【例题讲解】\n例3如图,水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积.(精确到0.01cm)(1)O.BAC讨论:(1)截面上有水部分的面积是指图上哪一部分?阴影部分.\nO.BACD(2)O.BACD(3)(2)水面高0.3m是指哪一条线段的长?这条线段应该怎样画出来?线段DC.过点O作OD垂直符号于AB并长交圆O于C.(3)要求图中阴影部分面积,应该怎么办?阴影部分面积=扇形OAB的面积-△OAB的面积\n解:如图,连接OA,OB,过点O作弦AB的垂线,垂足为D,交AB于点C,连接AC.∵OC=0.6,DC=0.3,∴OD=OC-DC=0.3,∴OD=DC.又AD⊥DC,∴AD是线段OC的垂直平分线,∴AC=AO=OC.从而∠AOD=60˚,∠AOB=120˚.O.BACD(3)\n有水部分的面积:S=S扇形OAB-SΔOABOBACD(3)\nOO弓形的面积=扇形的面积±三角形的面积弓形面积公式S弓形=S扇形-S三角形S弓形=S扇形+S三角形知识要点\nCB.C.D.1.已知弧所对的圆周角为90°,半径是4,则弧长为.2.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=2,O、H分别为AB、AC的中点,将△ABC顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过的面积为()ABCOHC1A1H1O1【练习】\n3.如图,☉A、☉B、☉C、☉D两两不相交,且半径都是2cm,则图中阴影部分的面积是.ABCD\n4.(例题变式题)如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.OABDCE解:\n弧长计算公式:扇形定义公式阴影部分面积求法:整体思想弓形公式S弓形=S扇形-S三角形S弓形=S扇形+S三角形割补法【小结】\n
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。