资料简介
2.4圆周角(1)\n3.下列命题是真命题的是()①在同圆中,相等的弦所对的圆心角相等;②相等的圆心角所对的弧相等③圆既是轴对称图形,又是中心对称图形A.①②B.①③C.②③D.①②③1.圆心角的定义?答:相等.答:顶点在圆心的角叫圆心角.2.圆心角的度数和它所对的弧的度数的关系?B【导入新课】\n圆周角的定义及性质圆心角顶点发生变化时,我们得到几种情况?A.OBC.思考:三个图中的∠BAC的顶点A各在圆的什么位置?角的两边和圆是什么关系?..AOBCA.OBC.【讲授新课】\n你能仿照圆心角的定义给圆周角下定义吗?.OBCA特征:①角的顶点在圆上.圆周角定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.②角的两边都与圆相交.\n解:∵∠AOC是△ABO的外角,∴∠AOC=∠B+∠A.∵OA=OB,●OABC∴∠A=∠B.∴∠AOC=2∠B.即∠ABC=∠AOC.你能写出这个命题吗?一条弧所对的圆周角等于它所对的圆心角的一半.1.首先考虑一种特殊情况:当圆心(O)在圆周角(∠ABC)的一边(BC)上时,圆周角∠ABC与圆心角∠AOC的大小关系.\n提示:能否转化为1的情况?你能写出这个命题吗?圆上一条弧所对的圆周角等于它所对的圆心角的一半.●OABCD如果圆心不在圆周角的一边上,结果会怎样?2.当圆心(O)在圆周角(∠ABC)的内部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?过点B作直径BD.由1可得:∠ABD=∠AOD,∠CBD=∠COD,∴∠ABC=∠AOC.\n提示:能否也转化为1的情况?过点B作直径BD.由1可得:你能写出这个命题吗?圆上一条弧所对的圆周角等于它所对的圆心角的一半.DABC3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?∠ABD=∠AOD,∠CBD=∠COD,∴∠ABC=∠AOC.●O\n圆周角定理圆周角的度数等于它所对弧上的圆心角度数的一半,同弧或等弧所对的圆周角相等.提示:圆周角定理是承上启下的知识点,要予以重视.●OABC●OABC●OABC即∠ABC=∠AOC.DD圆心在角的边圆心在角圆心在角上内外\nDABOCEF∵∠CAD=∠EBF∴CD=EF))\n∠AOB=2∠BOCAOBC∠ACB=2∠BAC证明:∠ACB=∠AOB∠BAC=∠BOC例如图:OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.\n1.判断下列各图形中的角是不是圆周角.图1图2图3图4图52.指出图中的圆周角.AOBC∠ACO∠ACB∠BCO∠OAB∠BAC∠OAC∠ABO∠CBO∠ABC××√××【练习】\n3.如图,点B,C在⊙O上,且BO=BC,则圆周角∠BAC等于()DA.60°B.50°C.40°D.30°\n定理:圆周角的度数等于它所对弧上的圆心角度数的一半,同弧或等弧所对的圆周角相等.【小结】
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。