返回

第4章一元二次方程4.6一元二次方程根与系数的关系课件(青岛版九上)

首页 > 初中 > 数学 > 第4章一元二次方程4.6一元二次方程根与系数的关系课件(青岛版九上)

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

4.6一元二次方程根与系数的关系\n1.探索一元二次方程的根与系数的关系.(难点)2.不解方程利用一元二次方程的根与系数的关系解决问题.(重点)学习目标\n复习引入1.一元二次方程的求根公式是什么?想一想:方程的两根x1和x2与系数a,b,c还有其他关系吗?2.如何用判别式b2-4ac来判断一元二次方程根的情况?对一元二次方程:ax2+bx+c=0(a≠0)b2-4ac>0时,方程有两个不相等的实数根.b2-4ac=0时,方程有两个相等的实数根.b2-4ac<0时,方程无实数根.导入新课\n算一算解下列方程并完成填空:(1)x2+3x-4=0;(2)x2-5x+6=0;(3)2x2+3x+1=0.一元二次方程两根关系x1x2x2+3x-4=0x2-5x+6=02x2+3x+1=0-4123-1x1+x2=-3x1·x2=-4x1+x2=5x1·x2=6讲授新课探索一元二次方程的根与系数的关系知识点1\n猜一猜(1)若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?重要发现如果方程x2+px+q=0的两根是x1,x2,那么x1+x2=-p,x1·x2=q.(x-x1)(x-x2)=0.x2-(x1+x2)x+x1·x2=0,x2+px+q=0,x1+x2=-p,x1·x2=q.\n猜一猜(2)通过上表猜想,如果一元二次方程ax2+bx+c=0(a≠0)的两个根分别是x1,x2,那么,你可以发现什么结论?\n证一证:\n\n一元二次方程的根与系数的关系(韦达定理)如果ax2+bx+c=0(a≠0)的两个根为x1,x2,那么注意满足上述关系的前提条件b2-4ac≥0.归纳总结\n例1:利用根与系数的关系,求下列方程的两根之和、两根之积.(1)x2+7x+6=0;解:这里a=1,b=7,c=6.Δ=b2-4ac=72–4×1×6=25>0.∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=-7,x1x2=6.一元二次方程的根与系数的关系的应用知识点2\n(2)2x2-3x-2=0.解:这里a=2,b=-3,c=-2.Δ=b2-4ac=(-3)2–4×2×(-2)=25>0,∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=,x1x2=-1.\n例2已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k的值.解:设方程的两个根分别是x1、x2,其中x1=2.所以:x1·x2=2x2=即:x2=由于x1+x2=2+=得:k=-7.答:方程的另一个根是,k=-7.\n变式:已知方程3x2-18x+m=0的一个根是1,求它的另一个根及m的值.解:设方程的两个根分别是x1、x2,其中x1=1.所以:x1+x2=1+x2=6,即:x2=5.由于x1·x2=1×5=得:m=15.答:方程的另一个根是5,m=15.\n例3不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.解:根据根与系数的关系可知:\n设x1,x2为方程x2-4x+1=0的两个根,则:(1)x1+x2=,(2)x1·x2=,(3),(4).411412练一练\n例4:设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且x12+x22=4,求k的值.解:由方程有两个实数根,得Δ=4(k-1)2-4k2≥0即-8k+4≥0.由根与系数的关系得x1+x2=2(k-1),x1x2=k2.∴x12+x22=(x1+x2)2-2x1x2=4(k-1)2-2k2=2k2-8k+4.由x12+x22=4,得2k2-8k+4=4,解得k1=0,k2=4.经检验,k2=4不合题意,舍去.\n总结常见的求值:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.归纳\n1.如果-1是方程2x2-x+m=0的一个根,则另一个根是___,m=____.2.已知一元二次方程x2+px+q=0的两根分别为-2和1,则:p=,q=.1-2-3随堂练习\n3.已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值.解:将x=1代入方程中:3-19+m=0.解得m=16,设另一个根为x1,则:1×x1=∴x1=\n4.已知x1,x2是方程2x2+2kx+k-1=0的两个根,且(x1+1)(x2+1)=4;(1)求k的值;(2)求(x1-x2)2的值.解:(1)根据根与系数的关系所以(x1+1)(x2+1)=x1x2+(x1+x2)+1=解得:k=-7;(2)因为k=-7,所以则:\n5.设x1,x2是方程3x2+4x–3=0的两个根.利用根系数之间的关系,求下列各式的值.(1)(x1+1)(x2+1);(2)解:根据根与系数的关系得:(1)(x1+1)(x2+1)=x1x2+x1+x2+1=(2)\n6.当k为何值时,方程2x2-kx+1=0的两根差为1.解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1.∵(x1-x2)2=(x1+x2)2-4x1x2=1,拓展提升由根与系数的关系,得\n7.已知关于x的一元二次方程mx2-2mx+m-2=0(1)若方程有实数根,求实数m的取值范围.(2)若方程两根x1,x2满足∣x1-x2∣=1求m的值.解:(1)方程有实数根,∴m的取值范围为m>0.(2)∵方程有实数根x1,x2,∵(x1-x2)2=(x1+x2)2-4x1x2=1,解得m=8.经检验m=8是原方程的解.\n根与系数的关系(韦达定理)内容如果一元二次方ax2+bx+c=0(a≠0)的两个根分别是x1,x2,那么应用课堂小结 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭