返回

第4章一元二次方程4.3用公式法解一元二次方程课件(青岛版九上)

首页 > 初中 > 数学 > 第4章一元二次方程4.3用公式法解一元二次方程课件(青岛版九上)

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

4.3用公式法解一元二次方程\n1.经历求根公式的推导过程.(难点)2.会用公式法解简单系数的一元二次方程.(重点)3.理解并会计算一元二次方程根的判别式.4.会用判别式判断一元二次方程的根的情况.学习目标\n复习引入1.用配方法解一元二次方程的步骤有哪几步?2.如何用配方法解方程2x2+4x+1=0?导入新课\n问题:老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小红突然站起来说出每个方程解的情况,你想知道她是如何判断的吗?\n任何一个一元二次方程都可以写成一般形式ax2+bx+c=0能否也用配方法得出它的解呢?合作探究讲授新课求根公式的推导知识点1\n用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0).方程两边都除以a解:移项,得配方,得即问题:接下来能用直接开平方解吗?\n即一元二次方程的求根公式特别提醒∵a≠0,4a2>0,当b2-4ac≥0时,\n∵a≠0,4a2>0,当b2-4ac<0时,而x取任何实数都不能使上式成立.因此,方程无实数根.\n由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c确定.因此,解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0(a≠0),当b2-4ac≥0时,将a,b,c代入式子就得到方程的根,这个式子叫作一元二次方程的求根公式,利用它解一元二次方程的方法叫作公式法,由求根公式可知,一元二次方程最多有两个实数根.用公式法解一元二次方程的前提是:1.必需是一般形式的一元二次方程:ax2+bx+c=0(a≠0);2.b2-4ac≥0.注意\n例1用公式法解方程5x2-4x-12=0.解:∵a=5,b=-4,c=-12,b2-4ac=(-4)2-4×5×(-12)=256>0.典例精析公式法解方程知识点2\n例2解方程:化简为一般式:解:即这里的a,b,c的值是什么?\n例3解方程:(精确到0.001).解:用计算器求得:\n例4解方程:4x2-3x+2=0.因为在实数范围内负数不能开平方,所以方程无实数根.解:\n要点归纳公式法解方程的步骤1.变形:化已知方程为一般形式;2.确定系数:用a,b,c写出各项系数;3.计算:b2-4ac的值;4.判断:若b2-4ac≥0,则利用求根公式求出;若b2-4ac<0,则方程没有实数根.\n1.解方程:x2+7x–18=0.解:这里a=1,b=7,c=-18.∵b2-4ac=72–4×1×(-18)=121>0,即x1=-9,x2=2.随堂练习\n2.解方程(x-2)(1-3x)=6.解:去括号,得x–2-3x2+6x=6,化简为一般式3x2-7x+8=0,这里a=3,b=-7,c=8.∵b2-4ac=(-7)2–4×3×8=49–96=-47<0,∴原方程没有实数根.\n3.解方程:2x2-x+3=0.解:这里a=2,b=-,c=3.∵b2-4ac=27-4×2×3=3>0,∴即x1=x2=\n公式法求根公式步骤一化(一般形式);二定(系数值);三求(b2-4ac值);四判(方程根的情况);五代(求根公式计算).课堂小结 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭