资料简介
3.1.1 不等式及其性质1通过本节课的学习让学生从一系列的具体问题情境中感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用,这是学习本章的基础,也是不等关系在本章内容的地位与作用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较的过程,即能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,这是学习本章第三节的基础.在本节课的学习过程中还安排了一些简单的学生易于处理的问题,用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望,这也是学生学习本章的情感基础.根据本节课教学内容,应用观察、抽象归纳、思考、交流、探究,得出数学模型,进行启发式教学并使用投影仪辅助.教学重点1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性;2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题;3.理解不等式或不等式组对于刻画不等关系的意义和价值.教学难点1.用不等式或不等式组准确地表示不等关系;\n2.用不等式或不等式组解决简单的含有不等关系的实际问题.教具准备投影仪、胶片、三角板、刻度尺三维目标一、知识与技能1.通过具体情境建立不等观念,并能用不等式或不等式组表示不等关系;2.了解不等式或不等式组的实际背景;3.能用不等式或不等式组解决简单的实际问题.二、过程与方法1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的现实问题,激发学生的学习兴趣和积极性三、情感态度与价值观1.通过具体情境,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度;2.\n学习过程中,通过对问题的探究思考、广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有实际意义问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的简洁美,激发学生的学习兴趣.教学过程导入新课师日常生活中,同学们发现了哪些数量关系.你能举出一些例子吗?生实例1:某天的天气预报报道,最高气温32℃,最低气温26℃.生实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xa<xb.(老师协助画出数轴草图) 生实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.(学生迫不及待地说出这么多,说明课前的预习量很充分,学习数学的兴趣浓,此时老师应给以充分的肯定和表扬)推进新课师同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好.而且大家已经考虑到本节课的标题不等关系与不等式,所举的实例都是反映不等量关系,\n这将暗示我们这节课的效果将非常好.(此时,老师用投影仪给出课本上的两个实例)实例6:限时40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.[过程引导]师能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点、进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人来说必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?生可以用不等式或不等式组来表示.师什么是不等式呢?生用不等号将两个解析式连结起来所成的式子叫不等式.(老师给出一组不等式-7<-5;3+4>1+4;2x≤6;a+2≥0;3≠4.目的是让同学们回忆不等式的一些基本形式,并说明不等号“≤,≥”的含义,是或的关系.回忆了不等式的概念,不等式组学生自然而然就清楚了)师能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,通过对不等式数学模型的研究,反过来作用于我们的现实生活,这才是我们学习数学的最终目的.\n(此时,同学们已经迫不及待地想说出自己的观点.)[合作探究]生我们应该先像实例2那样用不等式或不等式组把上述实例中的不等量关系表示出来.师说得非常好,下面我们就把上述实例中的不等量关系用不等式或不等式组一一表示出来.那应该怎么样来表示呢?(学生轮流回答,老师将答案相应地写在实例后面)生上述实例中的不等量关系用不等式表示应该为32℃≤t≤26℃.生可以表示为x≥0.(此时,学生有疑问,老师及时点拨,可以画出图形.让学生板演)(老师顺便画出三角形草画)生|AC|+|BC|>|AB|(只需结合上述三角形草图).生|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.生|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.生如果用v表示速度,则v≤40km/h.生f≥2.5%或p≥2.3%.(此时,一片安静,同学们在积极思考)\n生这样表达是错误的,因为两个不等量关系要同时满足,所以应该用不等式组来表示此实际问题中的不等量关系,即可以表示为生也可表示为f≥2.5%且p≥2.3%.师同学们看这两位同学的观点是否正确?生(齐答)大家齐声说,都可以.师同学们的思考很严密,很好!应该用不等式组来表示此实际问题中的不等量关系,也可以用“且”的形式来表达.课堂练习教科书第83页练习1、2.(老师让学生轮流回答,学生回答很好.此时,同学们已真正进入了本节课的学习状态,老师再用投影仪给出课本上的三个问题.问题是数学研究的核心,以问题展示的形式来培养学生的问题意识与探究意识)【问题1】设点A与平面α的距离为d,B为平面α上的任意一点.[活动与探究]师请同学们用不等式或不等式组来表示出此问题中的不等量关系.(此时,教室一片安静,同学们在积极思考,时间较长,老师应该及时点拨)[方法引导]\n师前面我们借助图形来表示不等量关系,这个问题是否可以?(可以让学生板演,结合三角形草图来表达)过点A作AC⊥平面α于点C,则d=|AC|≤|AB|.师这位同学做得很好,我们在解决问题时应该贯穿数形结合的思想,以形助数,以数解形.师请同学们继续来处理问题2.[合作探究]【问题2】某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?生可设杂志的定价为x元,则销售量就减少万本.师那么销售量变为多少呢?如何表示?生可以表示为万本,则总收入为万元.〔老师板书,即销售的总收入为不低于20万元的不等式表示为x≥20〕师是否有同学还有其他的解题思路?生可设杂志的单价提高了0.1n元,(n∈N*),\n(下面有讨论的声音,有的同学存在疑问,此时老师应密切关注学生的思维状况)师为什么可以这样设?生我只考虑单价的增量.师很好,请继续讲.生那么销售量减少了0.2n万本,单价为(2.5+0.1n)元,则也可得销售的总收入为不低于20万元的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.师这位同学回答得很好,表述得很准确.请同学们对两种解法作比较.(留下让学生思考的时间)师请同学们继续思考第三个问题.[合作探究]【问题3】某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍.怎样写出满足上述所有不等关系的不等式?师假设截得500mm的钢管x根,截得600mm的钢管y根.根据题意,应当有什么样的不等量关系呢?生截得两种钢管的总长度不能超过4000mm.生截得600mm钢管的数量不能超过500mm钢管的3倍.生截得两种钢管的数量都不能为负.师上述的三个不等关系是“或”还是“且”的关系呢?\n生它们要同时满足条件,应该是且的关系.生由实际问题的意义,还应有x,y∈N.师这位同学回答得很好,思维很严密.那么我们该用怎样的不等式组来表示此问题中的不等关系呢?生要同时满足上述三个不等关系,可以用下面的不等式组来表示:师这位同学回答很准确.通过上述三个问题的探究,同学们对如何用不等式或不等组把实际问题中所隐含的不等量关系表示出来,这一点掌握得很好.请同学们再完成下面这个练习.课堂练习练习:若需在长为4000mm的圆钢上,截出长为698mm和518mm两种毛坯,问怎样写出满足上述所有不等关系的不等式组?分析:设截出长为698mm的毛坯x个和截出长为518mm的毛坯y个,把截取条件数学化地表示出来就是:(练习可让学生板演,老师结合学生具体完成情况作评析,特别应注意x≥0,y≥0,x,y∈N)\n课堂小结师通过今天的学习,你学到了什么知识,有何体会?生我感到学习数学可以帮助我们解决生活中的实际问题.生数学就在我们的身边,与我们的生活联系非常紧密,我更加喜爱数学了.生本节课我们还进一步巩固了初中所学的二元一次不等式及二元一次不等式组,并且用它来解决现实生活中存在的大量不等量关系的实际问题.师我来补充一下,在用二元一次不等式及二元一次不等式组表示实际问题中的不等关系时,思维要严密、规范,并且要注意数形结合等思想方法的综合应用.(慢慢培养学生学会自己来归纳总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.进而培养学生的概括能力和语言表达能力)布置作业第84页习题3.1A组4、5.板书设计不等关系与不等式(一)实例方法引导方法归纳如何用不等式或不等式组表示实例剖析(知识方法应用)小结\n实际问题中不等量关系?示范解题备课资料一、备用习题1.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料需要的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨.现有库存磷酸盐10吨、硝酸盐66吨,在此基础上进行生产.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设x,y分别为计划生产甲、乙两种混合肥料的车皮数,则2.某年夏天,我国遭受特大洪灾,灾区学生小李家中经济发生困难.为帮助小李解决开学费用问题,小李所在班级学生(小李除外)决定承担这笔费用.若每人承担12元人民币,则多余84元;若每人承担10元,则不够;若每人承担11元,又多出40元以上.问该班共有多少人?这笔开学费用共多少元?请用不等式或不等式组把此实例中的不等量关系表示出来,不必解答.分析:设该班共有x人,这笔开学费用共y元,则.3.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.\n根据预测,甲、乙项目可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设投资人分别用x万元、y万元投资甲、乙两个项目,由题意,知4.某企业生产A、B两种产品,A产品的单位利润为60元,B产品的单位利润为80元,两种产品都需要在加工车间和装配车间进行生产,每件A产品在加工车间和装配车间各需经过0.8h和2.4h,每件B产品在两个车间都需经过1.6h,在一定时期中,加工车间最大加工时间为240h,装配车间最大生产时间为288h.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设该企业分别生产A产品x件、B产品y件,则二、课外探究开放性问题已知:不等式组\n你能举出符合此不等式组的实际问题吗?
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。