资料简介
16.3角的平分线导入新课讲授新课当堂练习课堂小结\n1.理解并掌握角平分线的性质定理及其逆定理.(难点)2.能利用角平分线的性质定理及其逆定理证明相关结论并应用.(重点)3.能利用尺规作出一个已知角的角平分线.学习目标\n1.角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.OBCA12导入新课\n2.下图中能表示点P到直线l的距离的是.线段PC的长PlABCD3.下列两图中线段AP能表示直线l1上一点P到直线l2的距离的是.AAPPl1l2l1l2图1图2图1\n角平分线的性质定理如图,任意作一个角∠AOB,作出∠AOB的平分线OC.在OC上任取一点P,过点P画出OA,OB的垂线,分别记垂足为D、E,测量PD,PE并作比较,你得到什么结论?在OC上再取几个点试一试.PAOBCDEPD=PE讲授新课\n已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.PAOBCDE证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO≌△PEO(AAS).∴PD=PE.\n性质定理:角的平分线上的点到角的两边的距离相等.应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离.定理的作用:证明线段相等.应用格式:∵OP是∠AOB的平分线,∴PD=PE(在角的平分线上的点到这个角的两边的距离相等).推理的理由有三个,必须写完全,不能少了任何一个.PD⊥OA,PE⊥OB,BADOPEC\n判一判:(1)∵如图,AD平分∠BAC(已知),∴=,()在角的平分线上的点到这个角的两边的距离相等BDCD×BADC\n(2)∵如图,DC⊥AC,DB⊥AB(已知).∴=,()在角内任意一条线上的点到这个角的两边的距离相等BDCD×BADC\n例1已知:如图,在△ABC中,AD是它的角平分线且BD=CD∠B=∠C,DE⊥AB,DF⊥AC.垂足分别为E,F.求证:EB=FC.ABCDEF分析:先利用角平分线的性质定理得到DE=DF,再利用全等证明Rt△BDE≌Rt△CDF.\nABCDEF证明:∵AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠DEB=∠DFC=90°.在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF.∴EB=FC.BD=CD,∠B=∠C,∠DEB=∠DFC,\n角平分线性质定理的逆定理角平分线性质定理的逆定理角的内部到角的两边的距离相等的点在角的平分线上.PAOBCDE应用所具备的条件:(1)位置关系:点在角的内部;(2)数量关系:该点到角两边的距离相等.定理的作用:判断点是否在角平分线上.应用格式:∵PD⊥OA,PE⊥OB,PD=PE.∴点P在∠AOB的平分线上.\n例2如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处(比例尺为1︰20000)?DCS解:作夹角的角平分线OC,截取OD=2.5cm,D即为所求.O\n例3已知:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.ABCPNM\nDEFABCPNM证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE.同理PE=PF.∴PD=PE=PF.即点P到三边AB,BC,CA的距离相等.想一想:点P在∠A的平分线上吗?这说明三角形的三条角平分线有什么关系?点P在∠A的平分线上.这说明三角形的三条角平分线相交于一点,这一点到三角形三边的距离相等.\n结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等.\n用尺规作已知角的角平分线如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?ABC(E)D其依据是SSS,两全等三角形的对应角相等.\nABMNCO已知:∠AOB.求作:∠AOB的平分线.仔细观察步骤作角平分线是最基本的尺规作图,大家一定要掌握噢!动手画一画作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点MN为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求.\n2.△ABC中,∠C=90°,AD平分∠CAB,且BC=8,BD=5,则点D到AB的距离是.ABCD31.如图,DE⊥AB,DF⊥BG,垂足分别是E,F,DE=DF,∠EDB=60°,则∠EBF=度,BE=.60BFEBDFACG当堂练习\n3.用尺规作图作一个已知角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边的距离相等ABMNCOA\n4.如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.解:AD平分∠BAC.理由如下:∵D到PE的距离与到PF的距离相等,∴点D在∠EPF的平分线上.∴∠1=∠2.又∵PE∥AB,∴∠1=∠3.同理,∠2=∠4.∴∠3=∠4,∴AD平分∠BAC.ABCEFD((((3412P\n5.如图,已知△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上.证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M.∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC.∴FG=FM.又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC,∴FM=FH,∴FG=FH.∴点F在∠DAE的平分线上.GHMABCFED\n角的平分线性质定理一个点:角平分线上的点;二距离:点到角两边的距离;两相等:两条垂线段相等性质定理的逆定理内容角的内部到角两边距离相等的点在这个角的平分线上作用判断一个点是否在角的平分线上辅助线添加过角平分线上一点向两边作垂线段课堂小结
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。