返回

第2章三角形2.5全等三角形第5课时教学课件(湘教版八上)

首页 > 初中 > 数学 > 第2章三角形2.5全等三角形第5课时教学课件(湘教版八上)

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

第2章三角形2.5全等三角形第5课时\n1.掌握判定三角形全等的“边边边”的条件,并会运用;(重点、难点)2.全面掌握三角形的稳定性,并会运用三角形的稳定性去解决实际问题.学习目标\n导入新课观察与思考拿三根火柴棍搭三角形,你能搭出几种呢?试试看.只能搭出唯一三角形\n如图,在△ABC和△A′B′C′中,如果AB=A′B′,BC=B′C′,AC=A′C′,那么△ABC与△A′B′C′全等吗?如果能够说明∠A=∠A′,那么就可以由“边角边”得出△ABC≌△A′B′C′.讲授新课用“SSS”判定两个三角形全等\n由上述变换性质可知△ABC≌,则,连接将△ABC作平移、旋转和轴反射等变换,使BC的像与重合,并使点A的像与点在的两旁,△ABC在上述变换下的像为\n∴∠1=∠2,∠3=∠4.从而∠1+∠3=∠2+∠4,∵,,即在和中,∴≌(SAS).∴△ABC≌,,,\n文字语言:三边对应相等的两个三角形全等.(简写为“边边边”或“SSS”)知识要点“边边边”判定方法ABCDEF在△ABC和△DEF中,∴△ABC≌△DEF(SSS).AB=DE,BC=EF,CA=FD,几何语言:\n例1已知:如图,AB=CD,BC=DA.求证:∠B=∠D.证明:在△ABC和△CDA中,∴△ABC≌△CDA(SSS).AB=CD,BC=DA,AC=CA(公共边),∴∠B=∠D.典例精析\n例2已知:如图,在△ABC中,AB=AC,点D,E在BC上,且AD=AE,BE=CD.求证:△ABD≌△ACE.证明∵BE=CD,∴BE-DE=CD-DE.即BD=CE.在△ABD和△ACE中,∴△ABD≌△ACE(SSS).AB=AC,BD=CE,AD=AE,\n如图,C是BF的中点,AB=DC,AC=DF.求证:△ABC≌△DCF.在△ABC和△DCF中,AB=DC∴△ABC≌△DCF(已知)(已证)AC=DFBC=CF证明:∵C是BF中点,∴BC=CF.(已知)(SSS).针对训练\n已知:如图,点B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:(1)△ABC≌△DEF(2)∠A=∠D.证明:∴△ABC≌△DEF(SSS)在△ABC和△DEF中AB=DEAC=DFBC=EF(已知)(已知)(已证)∵BE=CF∴BC=EF∴BE+EC=CF+CE(1)(2)∵△ABC≌△DEF(已证)∴∠A=∠D(全等三角形对应角相等)E变式题\n(1)将三根木条用钉子钉成一个三角形木架,然后扭动它,你能发现什么?实验探究(2)将四根木条用钉子钉成一个四边形木架,然后扭动它,你能发现什么?三角形的稳定性\n(3)在四边形木架上再钉上一根木条,将它的一对顶点连接起来,然后再扭动它,看看有什么变化?四边形木架会变形,但三角形的木架能固定住.三角形这个性质的叫作三角形的稳定性.你能说出它的原理吗?SSS\n理解“稳定性”“只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.\n比一比,谁知道的多你能举出一些现实生活中的应用了三角形稳定性的例子吗?\n\n\n\n观察上面这些图片,你发现了什么?这说明三角形有它所独有的性质,是什么呢?我们通过实验来探讨三角形的特性.发现这些物体都用到了三角形,为什么呢?讨论\n具有稳定性不具有稳定性不具有稳定性具有稳定性具有稳定性不具有稳定性练一练1.下列图形中哪些具有稳定性.\n2.如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.三角形两边之和大于第三边C.长方形的四个角都是直角D.三角形的稳定性DBAEFCD\n1.如图,D、F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件.BF=CD(答案不唯一)AE==××BDFC当堂练习2.如图,AB=CD,AD=BC,则下列结论:①△ABC≌△CDB;②△ABC≌△CDA;③△ABD≌△CDB;④BA∥DC.正确的个数是()A.1个B.2个C.3个D.4个OABCDC==××\n3.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D美观漂亮C\n4.已知:如图,AC=FE,AD=FB,BC=DE.求证:(1)△ABC≌△FDE;(2)∠C=∠E.证明:(1)∵AD=FB,∴AB=FD(等式性质).在△ABC和△FDE中,AC=FE(已知),BC=DE(已知),AB=FD(已证),∴△ABC≌△FDE(SSS);ACEDBF==??。。(2)∵△ABC≌△FDE(已证).∴∠C=∠E(全等三角形的对应角相等).\n思维拓展5.如图,AB=AC,BD=CD,BH=CH,图中有几组全等的三角形?它们全等的条件是什么?HDCBA△ABD≌△ACD(SSS)AB=AC,BD=CD,AD=AD,△ABH≌△ACH(SSS)AB=AC,BH=CH,AH=AH,△BDH≌△CDH(SSS)BH=CH,BD=CD,DH=DH,\n三边分别相等的两个三角形三角形全等的“SSS”判定:三边分别相等的两个三角形全等.课堂小结三角形的稳定性:三角形三边长度确定了,这个三角形的形状和大小就完全确定了. 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭