返回

第13章三角形中的边角关系命题与证明13.2命题与证明第1课时命题课件(沪科版八上)

资料简介

13.2命题与证明第1课时命题\n1.理解命题,定理及证明的概念,会区分命题的题设和结论;(重点)2.会判断真假命题,知道证明的意义及必要性,了解反例的作用.(重点、难点)学习目标\n导入新课观察与思考小华与小刚正在津津有味地阅读《我们爱科学》.这个黑客终于被逮住了.是的,现在的因特网广泛运用于我们的生活中,给我们带来了方便,但…….这个黑客是个小偷吧?可能是个喜欢穿黑衣服的贼.坐在旁边的两个人一边听着他们的谈话,一边也在悄悄地议论着.\n小明的百米成绩有进步,已达到9秒9.好!继续努力,争取超过10秒.不要再抢啦!每个人发一个球!有一位田径教练向领导汇报训练成绩;相传,阎锡山在观看士兵篮球赛,双方争抢非常激烈.于是命令:\n2.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.1.只要对一件事情作出了判断,不管正确与否,都是命题.如:相等的角是对顶角.注意:像这样判断一件事情的语句,叫作命题(proposition).讲授新课☆命题的定义与结构一、命题的概念\n例1判断下列四个语句中,哪个是命题,哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两条直线平行,同位角相等;(4)相等的两个角,一定是对顶角.典例精析解:(3)(4)是命题,(1)(2)不是命题.理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.\n2)两条直线相交,有且只有一个交点()5)取线段AB的中点C;()1)长度相等的两条线段是相等的线段吗?()6)画两条相等的线段()练一练:判断下列语句是不是命题?是用“√”,不是用“×表示.3)不相等的两个角不是对顶角()4)相等的两个角是对顶角()×√××√√\n观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如果一个数的平方等于9,那么这个数是3.都是“如果……那么……”的形式二、命题的结构\n命题一般都可以写成“如果……那么……”的形式.1.“如果”后接的部分是题设,2.“那么”后接的部分是结论.如命题:熊猫没有翅膀.改写为:如果这个动物是熊猫,那么它就没有翅膀.注意:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.\n命题题设结论已知事项由已知事项推出的事项两直线平行,同位角相等题设(条件)结论命题的组成:总结归纳\n把下列命题改写成“如果……那么……”的形式.并指出它的题设和结论.1.对顶角相等;2.内错角相等;3.两直线被第三条直线所截,同位角相等;4.同平行于一直线的两直线平行;5.等角的补角相等.练一练\n特别规定:正确的命题叫真命题,错误的命题叫假命题.命题1:“如果一个数能被4整除,那么它也能被2整除”☆真命题与假命题观察下列命题,你能发现这些命题有什么不同的特点吗?命题1是一个正确的命题;命题2是一个错误的命题.命题2:“如果两个角互补,那么它们是邻补角”\n(1)同旁内角互补()(4)两点可以确定一条直线()(7)互为邻补角的两个角的平分线互相垂直()(2)一个角的补角大于这个角()判断下列命题的真假.真的用“√”,假的用“×表示.(5)两点之间线段最短()(3)相等的两个角是对顶角()×√(6)同角的余角相等()×√√√×练一练\n做一做:指出下列命题的条件和结论,并改写成“如果……,那么……”的形式:命题条件结论①能被2整除的数是偶数.②有公共顶点的两个角是对顶角.③两直线平行,同位角相等.④同位角相等,两直线平行.那么这个数是偶数如果一个数能被2整除那么这两个角是对顶角如果两个角有公共顶点那么它们的同位角相等如果两条直线平行那么这两条直线平行如果两个同位角相等☆逆命题\n上述命题③与④的条件与结论之间有什么联系?③两直线平行,同位角相等.④同位角相等,两直线平行.命题③与④的条件与结论互换了位置.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫作原命题,另一个叫作逆命题.从上我们可以看出,只要将一个命题的条件和结论互换,就可得到它的逆命题,所以每个命题都有逆命题.你还能举出其它的例子吗?\n写出下列命题的逆命题:(1)若两数相等,则它们的绝对值也相等;(2)如果m是整数,那么它也是有理数;(3)两直线平行,内错角相等;(4)两边相等的三角形是等腰三角形.绝对值相等的两个数相等;如果m是有理数,那么它也是整数;内错角相等,两直线平行;等腰三角形的两边相等.练一练\n写出下列命题的逆命题,并判断它们的真假.(1)如果a=b,则a2=b2;(2)等角的余角相等;(3)同位角相等,两直线平行.(1)如果a2=b2,则a=b,假命题;(2)如果两个角的余角相等,那么这两个角也相等,真命题;(3)两直线平行,同位角相等,真命题.思考:原命题是真命题,那么它的逆命题也是真命题吗?解:\n“因为早上我发现张三从玉米地那边过来,把一袋东西背回家,还发现我地里的玉米被人捌了,我知道张三家没有种玉米。所以我家玉米肯定是张三捌的.”片段1:一天早上,李老汉来到衙门里告状说:张三刚刚在他地里偷捌了一袋子玉米.吕县令立即派衙役将张三拘捕到县衙审讯:吕县令问李老汉:“你怎知是张三偷了你的玉米?”李老汉想证明什么?他是怎么证明的?这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.☆举反例故事分析根据李老汉的证明,你能断定玉米是张三偷的吗?你觉得有疑点吗?\n片段2:县官一时拿不定主意,就问旁边的县丞道:“师爷,你怎么看?”县丞说“这事要证明是张三干的,还得弄清那袋子里装的是不是刚捌的玉米,还要看看地里的脚印是不是张三的,才行。如果袋子里装的是刚捌的玉米,且地里的脚印是张三的,那就一定是他偷的。”从结论出发,逆着寻找所需要的条件的思考过程,叫分析.在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么证明就很容易了.\n讨论:我们如何判断一个命题的真假?要判断一个命题是真命题需要推理论证;要判断一个命题是假命题只要举出一个反例即可.例如:相等的两个角是对顶角.12反例:符合命题条件,但不符合命题结论的例子.\n例2写出下列命题的逆命题,并判断它是真命题还是假命题.(1)若ac2>bc2,则a>b;(2)若ab=0,则a=0.解:(1)逆命题:若a>b,则ac2>bc2.假命题,如c=0,ac2=bc2;(2)逆命题:若a=0,则ab=0.真命题.\n分析:要证明AB,CD平行,就需要同位角相等的条件,图中∠1与∠3就是同位角.我们只要找到:能说明它俩相等的条件就行了.从图中,我们可以发现:∠2与∠3是对顶角,所以∠3=∠2这样我们找到了∠1与∠3相等的确切条件了.例3如图,∠1=∠2,试说明直线AB,CD平行?\n证明:因为∠2与∠3是对顶角,所以∠3=∠2又因为∠1=∠2,所以∠1=∠3,且∠1与∠3是同位角,所以:AB与CD平行.证明:∵∠2与∠3是对顶角,∴∠3=∠2又∵∠1=∠2∴∠1=∠3,∴AB∥CD例3如图,∠1=∠2,试说明直线AB,CD平行?\n当堂练习1.下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线D2.下列命题中,是真命题的是()A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=0D\n3.下列句子哪些是命题?是命题的,指出是真命题还是假命题?1)猪有四只脚;2)内错角相等;3)画一条直线;4)四边形是正方形;5)你的作业做完了吗?6)内错角相等,两直线平行;7)同垂直于一直线的两直线平行;8)过点P画线段MN的垂线;9)x>2.是真命题否是假命题是假命题否是真命题是假命题否否\n4.举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0.解:(1)两条直线平行形成的内错角,这两个角不是对顶角,但是它们相等;(2)当a=5,b=0时,ab=0,但a+b≠0.\n真命题假命题公理定理(只需举一个反例)(不需证明)(由推理证实)1.命题的定义:2.命题的组成:3.命题的分类:判断一件事情的句子题设和结论课堂小结 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭