资料简介
第12章一次函数12.2一次函数第5课时一次函数的应用——方案决策\n1.深入了解一次函数的应用价值;(重点)2.能将一个具体的实际问题转化为数学问题,利用数学模型解决实际问题;(难点)3.从问题的解决与探究中进一步感悟函数的应用价值,培养解决实际问题的数学能力.学习目标\n导入新课观察与思考O观察下图,你能发现它们三条函数直线之间的差别吗?这些玩具车下滑的过程中有哪些不同?xy\n讲授新课☆实际问题中的方案选择我们前面学习了一些有关一次函数的知识及如何确定解析式,一次函数也可以帮我们解决很多实际问题.比如刚才的问题,你知道怎样让玩具小车跑得更快吗?\n例1某单位有职工几十人,想在节假日期间组织到外地旅游.当地有甲、乙两家旅行社,它们服务质量基本相同,到此地旅游的价格都是每人100元.经联系协商,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示单位先交1000元后,给予每位游客六折优惠.问该单位选择哪个旅行社,可使其支付的旅游总费用较少?典例精析分析:假设该单位参加旅游人数为x,按甲旅行社的优惠条件,应付费用80x(元);按乙旅行社的优惠条件,应付费用(60x+1000)(元).问题变为比较80x与60x+1000的大小了.\n解法一:设该单位参加旅游人数为x.那么选甲旅行社,应付费用80x(元);选乙旅行社,应付(60x+1000)(元).记y1=80x,y2=60x+1000.在同一直角坐标系内作出两个函数的图象,y1与y2的图象交于点(50,4000).x/人5060y/元800160032002400400048005600O10203040708090y1=80xy2=60x+1000\n观察图象,可知:当人数为50时,选择甲或乙旅行社费用都一样;当人数为0~49人时,选择甲旅行社费用较少;当人数为51~100人时,选择乙旅行社费用较少.x/人5060y/元800160032002400400048005600O10203040708090y1=80xy2=60x+1000\n解法二:设选择甲、乙旅行社费用之差为y,则y=y1-y2=80x-(60x+1000)=20x-1000.画出一次函数y=20x-1000的图象如下图.O204060-200-400-600-800-1000yxy=20x-1000它与x轴交点为(50,0)由图知:(1)当x=50时,y=0,即y1=y2;(2)当x>50时,y>0,即y1>y2;(3)当x<50时,y<0,即y1<y2.\n解法三:(1)当y1=y2,即80x=60x+1000时,x=50.所以当人数为50时,选择甲或乙旅行社费用都一样;(2)当y1>y2,即80x>60x+1000时,得x>50.所以当人数为51~100人时,选择乙旅行社费用较少;(3)当y1<y2,即80x<60x+1000时,得x<50.所以当人数为0~49人时,选择甲旅行社费用较少;\n例2:某县区大力发展猕猴桃产业,预计今年A地将采摘200吨,B地将采摘300吨.若要将这些猕猴桃运到甲、乙两个冷藏仓库,已知甲仓库可储存240吨,乙仓库可储存260吨,从A地运往甲、乙两处的费用分别为每吨20元和25元,从B地运往甲、乙两处的费用分别为每吨15元和18元.设从A地运往甲仓库的猕猴桃为x吨,A、B两地运往两仓库的猕猴桃运输费用分别为yA元和yB元.(1)分别求出yA、yB与x之间的函数关系式;解:(1)yA=20x+25(200-x)=-5x+5000,yB=15(240-x)+18(60+x)=3x+4680;\n(2)试讨论A、B两地中,哪个的运费较少;解:∵yA-yB=(-5x+5000)-(3x+4680)=-8x+320,∴当-8x+320>0,即x<40时,B地的运费较少;当-8x+320=0,即x=40时,两地的运费一样多;当-8x+320<0,即x>40时,A地的运费较少;\n(3)考虑B地的经济承受能力,B地的猕猴桃运费不得超过4830元,在这种情况下,请问怎样调运才能使两地运费之和最少?求出这个最小值.解:设两地运费之和为y元,则y=yA+yB=(-5x+5000)+(3x+4680)=-2x+9680.由题意得yB=3x+4680≤4830,解得x≤50.∵y随x的增大而减小,x最大为50,∴y最小=-2×50+9680=9580.∴在此情况下,当A地运往甲、乙两仓库分别为50吨、150吨;B地运往甲、乙两仓库分别为190吨、110吨时,才能使两地运费之和最少,最少是9580元.\n总结:阅读理解题的解题关键是读懂题意.第(2)小题比较大小要注意分类讨论,第(3)小题是利用一次函数的方案设计问题,一般先根据数量之间的关系建立函数,然后再利用一次函数的增减性确定出符合要求的最佳方案.\n例3:我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(如下图).海岸公海BA\n下图中l1,l2分别表示两船相对于海岸的距离S与追赶时间t之间的关系.根据图象回答下列问题(1)哪条线表示B到海岸的距离与追赶时间之间的关系?解:观察图象,得 当t=0时,B距海岸0海里,即S=0,故l1表示B到海岸的距离与追赶时间之间的关系;246810O2468t/分s/海里l1l2BA\n(2)A、B哪个速度快?t从0增加到10时,l2的纵坐标增加了2,l1的纵坐标增加了5.246810O2468t/分s/海里l1l2BA即10分内,A行驶了2海里,B行驶了5海里,所以B的速度快75\n当t=15时,l1上对应点在l2上对应点的下方这表明,15分钟时B尚未追上A.246810O2468t/分s/海里l1l2BA1214(3)15分钟内B能否追上A?15\n246810O2468t/分s/海里l1l2BA1214(4)如果一直追下去,那么B能否追上A?如图延伸l1、l2相交于点P.因此,如果一直追下去,那么B一定能追上A.P\n246810O2468t/分s/海里l1l2BA1214P(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?从图中可以看出,l1与l2交点P的纵坐标小于12,这说明在A逃入公海前,我边防快艇B能够追上A.10\nk1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2海里/分,快艇B的速度是0.5海里/分.246810O2468t/分s/海里l1l2BA1214(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?\n下图l1,l2分别是龟兔赛跑中s-t函数图象.(1)这一次是米赛跑.(2)表示兔子的图象是.100l2练一练\ns/米(3)当兔子到达终点时,乌龟距终点还有米;l1l212345O10020120406080t/分687(4)乌龟要与兔子同时到达终点乌龟要先跑米;(5)乌龟要先到达终点,至少要比兔子早跑分钟;-11291011-3-2404-440\n1.小亮和小明周六到距学校24km的滨湖湿地公园春游,小亮8:00从学校出发,骑自行车去湿地公园,小明8:30从学校出发,乘车沿相同路线去滨湖湿地公园,在同一直角坐标系中,小亮和小明的行进路程S(km)与时间t(时)的函数图象如图所示.根据图象得到结论,其中错误的是( )A.小亮骑自行车的平均速度是12km/hB.小明比小亮提前0.5小时到达滨湖湿地公园C.小明在距学校12km处追上小亮D.9:30小明与小亮相距4kmD当堂练习\n解析:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意得1600+100a=1400+100b,1600+300a=1400+200b,解得a=2,b=4.故这次越野跑的全程为1600+300×2=220米.2.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.2200\n3.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差km/h.解析:根据图象可得出:甲的速度为120÷5=24(km/h),乙的速度为(120﹣4)÷5=23.2(km/h),速度差为24﹣23.2=0.8(km/h),0.8B\n4.电信局为满足不同客户的需要,设有A、B两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间的关系如图(MN∥CD),若通话时间为500分钟,则应选择哪种方案更优惠()A.方案AB.方案BC.两种方案一样优惠D.不能确定B\n5.在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是.30厘米、25厘米2时、2.5时\n(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?y甲=-15x+30y乙=-10x+25x=1x>1x<1\n课堂小结利用一次函数进行方案决策列出不等式(方程),求出自变量在取不同值时所对应的函数值,判断其大小关系从数学的角度分析数学问题,建立函数模型结合实际需求,选择最佳方案
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。