返回

第22章相似形22.2相似三角形的判定第2课时相似三角形的判定定理1课件(沪科版)

资料简介

22.2相似三角形的判定第2课时相似三角形的判定定理1\n1.理解相似三角形的定义,掌握定义中的两个条件.2.掌握相似三角形的判定定理1.(重点)3.能熟练运用相似三角形的判定定理1.(难点)学习目标\n问题1:这两个三角形有什么关系?观察与思考全等三角形导入新课\n那这样变化一下呢?\n相似三角形相似三角形定义:我们把三角分别相等、三边成比例的两个三角形叫做相似三角形.对应角……?对应边……?问题2根据相似多边形的定义,你能说说什么叫相似三角形吗?全等是一种特殊的相似\n定义判定方法全等三角形相似三角形三角、三边对应相等的两个三角形全等三角对应相等,三边对应成比例的两个三角形相似角边角ASA角角边AAS边边边SSS边角边SAS斜边、直角边HL问题3三角形全等的性质和判定方法有哪些?需要三个等量条件思考全等是一种特殊的相似,那你猜想一下,判定两个三角形相似需要几个条件?\n学校举办活动,需要三个内角分别为90°,60°,30°的形状相同、大小不同的三角纸板若干.小明手上的测量工具只有一个量角器,他该怎么做呢?导入新课情境引入???\n讲授新课问题一度量AB,BC,AC,A′B′,B′C′,A′C′的长,并计算出它们的比值.你有什么发现?CABA'B'C'☆两角分别相等的两个三角形相似合作探究与同伴合作,一人画△ABC,另一人画△A′B′C′,使∠A=∠A′,∠B=∠B′,探究下列问题:这两个三角形是相似的\n证明:在△ABC的边AB(或AB的延长线)上,截取AD=A′B′,过点D作DE//BC,交AC于点E,则有△ADE∽△ABC,∠ADE=∠B.∵∠B=∠B′,∴∠ADE=∠B′.又∵AD=A′B′,∠A=∠A′,∴△ADE≌△A′B′C′,∴△A′B′C′∽△ABC.CAA'BB'C'DE问题二试证明△A′B′C′∽△ABC.\n由此得到利用两组角判定两个三角形相似的定理:两角分别相等的两个三角形相似.∵∠A=∠A',∠B=∠B',∴△ABC∽△A'B'C'.符号语言:CABA'B'C'归纳:\n例1:如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(两角分别相等的两个三角形相似).∴∴BC=14.BADEC典例精析\n如图,△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.AEFBCD证明:∵DE∥BC,EF∥AB,∴∠AED=∠C,∠A=∠FEC.∴△ADE∽△EFC.练一练\n证明:∵∠BAC=∠1+∠DAC,∠DAE=∠3+∠DAC,∠1=∠3,∴∠BAC=∠DAE.∵∠C=180°-∠2-∠DOC,∠E=180°-∠3-∠AOE,∠DOC=∠AOE(对顶角相等),∴∠C=∠E.∴△ABC∽△ADE.例2:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.ABCDE132O\n归纳总结\n当堂练习1.如图,已知AB∥DE,∠AFC=∠E,则图中相似三角形共有()A.1对B.2对C.3对D.4对C\n2.如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A.B.C.D.ACABDE\nABDC3.如图,点D在AB上,当∠=∠(或∠=∠)时,△ACD∽△ABC;ACDACBBADB\n证明:∵在△ABC中,∠A=40°,∠B=80°,∴∠C=180°-∠A-∠B=60°.∵在△DEF中,∠E=80°,∠F=60°.∴∠B=∠E,∠C=∠F.∴△ABC∽△DEF.4.如图,△ABC和△DEF中,∠A=40°,∠B=80°,∠E=80°,∠F=60°.求证:△ABC∽△DEF.ACBFED\n证明:∵△ABC的高AD、BE交于点F,∴∠FEA=∠FDB=90°,∠AFE=∠BFD(对顶角相等).∴△FEA∽△FDB,∴5.如图,△ABC的高AD、BE交于点F.求证:DCABEF\n利用两角判定三角形相似定理:两角分别相等的两个三角形相似课堂小结相似三角形的判定定理1的运用 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭