返回

第四章图形的相似4.5相似三角形判定定理的证明课件(北师大版)

首页 > 初中 > 数学 > 第四章图形的相似4.5相似三角形判定定理的证明课件(北师大版)

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载

资料简介

第四章图形的相似*4.5相似三角形判定定理的证明\n1.会证明相似三角形判定定理;(重点)2.运用相似三角形的判定定理解决相关问题.(难点)学习目标\n问题:相似三角形的判定方法有哪些?①两角对应相等,两三角形相似.②两边对应成比例且夹角相等,两三角形相似.③三边对应成比例,两三角形相似.导入新课\n证明相似三角形的判定定理在上两节中,我们探索了三角形相似的条件,稍候我们将对它们进行证明.定理1:两角分别相等的两个三角形相似.已知:如图,在△ABC和△A'B'C'中,∠A=∠A',∠B=∠B'.求证:△ABC∽△A'B'C'.A′B′C′ABC讲授新课知识点1\n∠1=∠B,∠2=∠C,过点D作AC的平行线,交BC于点F,则∴∴∵DE∥BC,DF∥AC,∴四边形DFCE是平行四边形.∴DE=CF.∴∴A′B′C′ABC证明:在△ABC的边AB(或它的延长线)上截取AD=A'B',过点D作BC的平行线,交AC于点E,则EDF12\n而∠1=∠B,∠DAE=∠BAC,∠2=∠C,∴△ADE∽△ABC.∵∠A=∠A',∠ADE=∠B=∠B',AD=A'B',∴△ADE≌△A'B'C'.∴△ABC∽△A'B'C.A′B′C′ABCEDF12\n我们来证明一下前面得出的结论:如图,在△ABC与△A′B′C′中,已知∠A=∠A′,证明:在△A′B′C′的边A′B′上截取点D,使A′D=AB.过点D作DE∥B′C′,交A′C′于点E.∵DE∥B′C′,∴△A′DE∽△A′B′C′.求证:△ABC∽△A′B′C′.BACDEB'A'C'∴定理2:两边成比例且夹角相等的两个三角形相似.\n∴A′E=AC.又∠A′=∠A,∴△A′DE≌△ABC,∴△A′B′C′∽△ABC.BACDEB'A'C'∵A′D=AB,∴\n定理3:三边成比例的两个三角形相似.已知:如图,在△ABC和△A'B'C'中,求证:△ABC∽△A'B'C'.A′B′C′ACEDB\n∴C′B′A′证明:在线段AB(或延长线)上截取AD=A′B′,过点D作DE∥BC交AC于点E.∵DE∥BC,∴△ADE∽△ABC.∴DE=B′C′,EA=C′A′.∴△ADE≌△A′B′C′,△A′B′C′∽△ABC.BCADE又,AD=A′B′,∴,.\n相似三角形判定定理的运用例1:已知:如图,∠ABD=∠C,AD=2,AC=8,求AB.CDAB解:∵∠A=∠A,∠ABD=∠C,∴△ABD∽△ACB,∴AB:AC=AD:AB,∴AB2=AD·AC.∵AD=2,AC=8,∴AB=4.知识点2\n例2如图,已知:∠ACB=∠ADC=90°,AD=2,CD=,当AB的长为时,△ACB与△ADC相似.CABD\n解析:∵∠ADC=90°,AD=2,CD=,要使这两个直角三角形相似,有两种情况:(1)当Rt△ABC∽Rt△ACD时,有AC:AD=AB:AC,即:2=AB:,解得AB=3;∴CABD2\n(2)当Rt△ACB∽Rt△CDA时,有AC:CD=AB:AC,即:=AB:,解得AB=.∴当AB的长为3或时,这两个直角三角形相似.CABD2\n在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,依据下列各组条件判定这两个三角形是否相似.(1)∠A=35°,∠B′=55°:;(2)AC=3,BC=4,A′C′=6,B′C′=8:;(3)AB=10,AC=8,A′B′=25,B′C′=15:.练一练相似相似相似\n1.如下图,在大小为4×4的正方形网格中,是相似三角形的是()①②③④①③随堂练习\n2.已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD=,求AD的长.解:∵AB=6,BC=4,AC=5,CD=∴又∠B=∠ACD,∴△ABC∽△DCA,∴∴AD=ABCD\n相似三角形判定定理的证明定理1:两角分别相等的两个三角形相似.定理的运用定理证明定理2:两边成比例且夹角相等的两个三角形相似.定理3:三边成比例的两个三角形相似.课堂小结 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭