返回

第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质课件(北师大版)

资料简介

第一章特殊平行四边形1.1菱形的性质与判定(第1课时菱形的性质)\n1.了解菱形的概念及其与平行四边形的关系.2.探索并证明菱形的性质定理.(重点)3.应用菱形的性质定理解决相关计算或证明问题.(难点)学习目标\n情景引入欣赏下面图片,图片中框出的图形是你熟悉的吗?导入新课\n思考如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?平行四边形菱形邻边相等菱形的定义和性质知识点讲授新课\n菱形的定义:有一组邻边相等的平行四边形.菱形是特殊的平行四边形.平行四边形不一定是菱形.归纳总结\n活动1如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?观看下面视频:\n活动2在自己剪出的菱形上画出两条折痕,折叠手中 的图形(如图),并回答以下问题:问题1菱形是轴对称图形吗?如果是,指出它的对称轴.是,两条对角线所在直线都是它的对称轴.问题2根据上面折叠过程,猜想菱形的四边在数量上有什么关系?菱形的两对角线有什么关系?猜想1菱形的四条边都相等.猜想2菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.\n已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;(2)AC⊥BD;∠DAC=∠BAC,∠DCA=∠BCA,∠ADB=∠CDB,∠ABD=∠CBD.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC(平行四边形的对边相等).又∵AB=AD,∴AB=BC=CD=AD.ABCOD证一证\n(2)∵AB=AD,∴△ABD是等腰三角形.又∵四边形ABCD是平行四边形,∴OB=OD(平行四边形的对角线互相平分).在等腰三角形ABD中,∵OB=OD,∴AO⊥BD,AO平分∠BAD,即AC⊥BD,∠DAC=∠BAC.同理可证∠DCA=∠BCA,∠ADB=∠CDB,∠ABD=∠CBD.ABCOD\n菱形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.对称性:是轴对称图形.边:四条边都相等.对角线:互相垂直,且每条对角线平分一组对角.角:对角相等.边:对边平行且相等.对角线:相互平分.菱形的特殊性质平行四边形的性质归纳总结\n例1如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC=6cm,求菱形的周长.解:∵四边形ABCD是菱形,∴AC⊥BD,AO=AC,BO=BD.∵AC=6cm,BD=12cm,∴AO=3cm,BO=6cm.在Rt△ABO中,由勾股定理得∴菱形的周长=4AB=4×3=12(cm).典例精析\n例2如图,在菱形ABCD中,CE⊥AB于点E,CF⊥AD于点F,求证:AE=AF.证明:连接AC.∵四边形ABCD是菱形,∴AC平分∠BAD,即∠BAC=∠DAC.∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°.又∵AC=AC,∴△ACE≌△ACF.∴AE=AF.菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.归纳\n例3如图,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE,求证:OA=EB.ABCDOE证明:∵四边形ABCD为菱形,∴AD∥BC,AD=BA,∠ABC=∠ADC=2∠ADB,∴∠DAE=∠AEB,∵AB=AE,∴∠ABC=∠AEB,∴∠ABC=∠DAE,∵∠DAE=2∠BAE,∴∠BAE=∠ADB.又∵AD=BA,∴△AOD≌△BEA,∴AO=BE.\n1.如图,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A.10B.12C.15D.20C练一练2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长为_______.第1题图第2题图6cm\n1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等C2.如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于(  )A.18B.16C.15D.14B随堂练习\n3.根据下图填一填:(1)已知菱形ABCD的周长是12cm,那么它的边长是______.(2)在菱形ABCD中,∠ABC=120°,则∠BAC=_______.(3)菱形ABCD的两条对角线长分别为6cm和8cm,则菱形的边长是_______.3cm30°ABCOD5cm\n(4)菱形的一个内角为120°,平分这个内角的对角线长为11cm,菱形的周长为______.44cmABCOD\n4.如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∵四边形ABCD是菱形,∴CB=CD,CA平分∠BCD.∴∠BCE=∠DCE.又CE=CE,∴△BCE≌△DCE(SAS).∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠EDC.∴∠AFD=∠CBE.ADCBFE\n菱形的性质菱形的性质有关计算边周长=边长的四倍角对角线1.两组对边平行且相等;2.四条边相等两组对角分别相等,邻角互补邻角互补1.两条对角线互相垂直平分;2.每一条对角线平分一组对角课堂小结 查看更多

Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6

优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。

全屏阅读
关闭