资料简介
第3章图形的相似3.1比例线段第1课时\n1.理解并掌握比例的基本性质和等比性质;(重点)2.能运用比例的性质进行相关计算,能通过比例变形解决一些实际问题.(难点)学习目标\n导入新课观察与思考如图的(1)和(2)都是故宫太和殿的照片,(2)是由(1)缩小得到的.(1)(2)PQP′Q′在照片(1)中任意取四个点P,Q,A,B在照片(2)找出对应的两个点P′,Q′,A′,B′量出线段PQ,P′Q′,AB,A′B′的长度.计算它们的长度的比值.AA´B´B\n讲授新课合作探究问题1:如果四个数a,b,c,d成比例,即那么ad=bc吗?反过来如果ad=bc,那么a,b,c,d四个数成比例吗?比例的基本性质\n如果四个数a,b,c,d成比例,即那么ad=bc吗?在等式两边同时乘以bd,得ad=bc由此可得到比例的基本性质:如果,那么ad=bc.\n由此可得到比例的基本性质:如果ad=bc(a,b,c,d都不等于0),那么.如果ad=bc,那么等式还成立吗?在等式中,四个数a,b,c,d可以为任意数,而在分式中,分母不能为0.\n典例精析例1已知四个数a,b,c,d成比例,即.下列各式成立吗?若成立,请说明理由.①②④③\n由此得到解:由于两个非零数相等,则它们的倒数也相等,因此,由①式可以立即得到②式,即②式成立.由①式得ad=bc.在上式两边同除以cd,得在①式两边都加上1,得\n例2:根据下列条件,求a:b的值:(1)4a=5b;(2)(2)∵,∴8a=7b,∴解(1)∵4a=5b,∴\n例3:已知,求的值.解:解法1:由比例的基本性质,得2(a+3b)=7×2b.∴a=4b,∴=4.解法2:由,得.∴,\n,那么、各等于多少?2.已知1.已知: 线段a、b、c满足关系式且b=4,那么ac=______.,练一练16\n问题2:已知a,b,c,d,e,f六个数,如果(b+d+f≠0),那么成立吗?为什么?设,则a=kb,c=kd,e=kf.所以等比性质(拓展)\n由此可得到比例的又一性质:\n例3:在△ABC与△DEF中,已知,且△ABC的周长为18cm,求△DEF得周长.解:∵∴∴4(AB+BC+CA)=3(DE+EF+FD).即AB+BC+CA=(DE+EF+FD),又△ABC的周长为18cm,即AB+BC+CA=18cm.∴△DEF的周长为24cm.\n例4:若a,b,c都是不等于零的数,且,求k的值.得,则k==2;当a+b+c=0时,则有a+b=-c.此时综上所述,k的值是2或-1.解:当a+b+c≠0时,由,\n1.(1)已知,那么=,=.(3)如果,那么.(2)如果那么.当堂练习\n2.已知四个数a,b,c,d成比例.(1)若a=-3,b=9,c=2,求d;(2)若a=-3,b=,c=2,求d.\n比例的性质如果那么ad=bc基本性质等比性质如果ad=bc(a,b,c,d)都不等于0,那么课堂小结
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。