资料简介
第3课时余弦【知识与技能】1.使学生理解锐角余弦的定义.2.会求直三角形中锐角的余弦值.3.会用计算器求一般锐角的余弦值.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度】引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.【教学重点】求直三角形中锐角的余弦值.【教学难点】求直三角形中锐角的余弦值.一、情境导入,初步认识1.什么叫作正弦?2.sin30°、sin45°、sin60°的值分别是多少?【教学说明】对上节课的内容进行复习.二、思考探究,获取新知1.如图,△ABC和△DEF都是直角三角形,其中∠A=∠D=α,∠C=∠F=90°,则成立吗?为什么?\n由此可得,在有一个锐角等于α的所有直角三角形中,角α的邻边与斜边的比值是一个常数,与直角三角形的大小无关.【归纳结论】在直角三角形中,我们把锐角α的邻边与斜边的比叫作角α的余弦.记作cosα.即cosα=.从上述探究和证明过程看出,对于任意锐角α,有cosα=sin(90°-α),从而有:sinα=cos(90°-α).2.计算cos30°,cos45°,cos60°的值.【归纳结论】cos30°=;cos45°=;cos60°=.3.我们已经知道了三个特殊角(30°、45°、60°)的余弦值,而对于一般锐角α的余弦值,我们可以用计算器来计算.例如,求cos50°角的余弦值,我们可以在计算器上依次按键,则屏幕上显示的就是cos50°的值.4.如果已知余弦值,我们可以利用计算器求出它对应的锐角的度数.例如:已知cosα=0.8661,求α的度数.我们可以依次按键,则屏幕上显示的就是α的度数.【教学说明】学生先了解计算器各按键的功能,为利用计算器正确求锐角三角函数值打下了基础.三、运用新知,深化理解1.见教材P115例4.2.下列说法正确的个数有()(1)对于任意锐角α,都有0<sinα<1和0<cosα<1(2)对于任意锐角α1,α2,如果α1<α2,那么cosα1<cosα2(3)如果sinα1<sinα2,那么锐角α1<锐角α2(4)对于任意锐角α,都有sinα=cos(90°-α)A.1个B.2个C.3个D.4个【答案】C3.在△ABC中,∠C=90°,若2AC=AB,求∠A的度数及cosB的值.\n分析:利用三角形中边的比值关系,结合三角函数的定义解决问题,注意对特殊角三角函数值的逆向应用.解:∵∠C=90°,2AC=AB,∴∵cosA=,∴cosA=,∴∠A=45°,∴cosB=cos45°=.4.计算:5.用计算器求值(保留四位小数):(1)sin38°19′;(2)cos78°43′16″.解:(1)按MODE,出现:DEG,按sin,38,“.”,19,“.”,=,显示:0.620007287,则结果为0.6200.(2)按MODE,出现:DEG,按cos,78,“.”,43,“.”,16,“.”=,显示:0.195584815,则结果为0.1956.6.若sin40°=cosα,求α的度数.解:∵sin40°=cosα,∴α=90°-40°=50°.7.在Rt△ABC中,∠C=90°,sinB=,求的值.\n解:∵sin2B+cos2B=1,∠B为Rt△ABC的内角,∴cosB==,即cosB==.8.正方形网格中,∠AOB如图放置,求cos∠AOB的值.解:如图,在OA上取一点E,过点E作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=.∴cos∠AOB==.【教学说明】引导学生分析问题,作出辅助线,再写出解答过程.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题4.1”中第6、7、8题.教学中,我一直比较关注学生的情感态度,对那些积极动脑,热情参与的同学都给予鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性.在学生“心求通而未得,口欲言而不能”的状态下,适时导出概念,自然而合理,符合新课标的理念.若干年后,或许对余弦概念的表达式已经彻底忘记,但对探索概念的过程,创新意识,数学思想,将深深铭刻在他们的脑海中.
查看更多
Copyright 2004-2022 uxueke.com All Rights Reserved 闽ICP备15016911号-6
优学科声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记
如有知识产权人不愿本站分享使用所属产权作品,请立即联系:uxuekecom,我们会立即处理。